加载中

    Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Wang Ping,Geng Jing,Gao Jiahui,Zhao Hao,Li Junhong,Shi Yiran,Yang Bingying,Xiao Chen,Linghu Yueyue,Sun Xiufeng,Chen Xin,Hong Lixin,Qin Funiu,Li Xun,Yu Jau-Song,You Han,Yuan Zengqiang,Zhou Dawang,Johnson Randy L,Chen Lanfen Nature communications Reactive oxygen species (ROS) production in phagocytes is a major defense mechanism against pathogens. However, the cellular self-protective mechanism against such potential damage from oxidative stress remains unclear. Here we show that the kinases Mst1 and Mst2 (Mst1/2) sense ROS and maintain cellular redox balance by modulating the stability of antioxidant transcription factor Nrf2. Site-specific ROS release recruits Mst1/2 from the cytosol to the phagosomal or mitochondrial membrane, with ROS subsequently activating Mst1/2 to phosphorylate kelch like ECH associated protein 1 (Keap1) and prevent Keap1 polymerization, thereby blocking Nrf2 ubiquitination and degradation to protect cells against oxidative damage. Treatment with the antioxidant N-acetylcysteine disrupts ROS-induced interaction of Mst1/2 with phagosomes or mitochondria, and thereby diminishes the Mst-Nrf2 signal. Consistently, loss of Mst1/2 results in increased oxidative injury, phagocyte ageing and death. Thus, our results identify the Mst-Nrf2 axis as an important ROS-sensing and antioxidant mechanism during an antimicrobial response. 10.1038/s41467-019-08680-6
    Generation and characterization of keap1a- and keap1b-knockout zebrafish. Nguyen Vu Thanh,Bian Lixuan,Tamaoki Junya,Otsubo Shiro,Muratani Masafumi,Kawahara Atsuo,Kobayashi Makoto Redox biology The Keap1-Nrf2 pathway is an evolutionarily conserved mechanism that protects cells from oxidative stress and electrophiles. Under homeostatic conditions, Keap1 interacts with Nrf2 and leads to its rapid proteasomal degradation, but when cells are exposed to oxidative stress/electrophiles, Keap1 senses them, resulting in an improper Keap1-Nrf2 interaction and Nrf2 stabilization. Keap1 is therefore considered both an "inhibitor" of and "stress sensor" for Nrf2 activation. Interestingly, fish and amphibians have two Keap1s (Keap1a and Keap1b), while there is only one in mammals, birds and reptiles. A phylogenetic analysis suggested that mammalian Keap1 is an ortholog of fish Keap1b, not Keap1a. In this study, we investigated the differences and similarities between Keap1a and Keap1b using zebrafish genetics. We generated zebrafish knockout lines of keap1a and keap1b. Homozygous mutants of both knockout lines were viable and fertile. In both mutant larvae, the basal expression of Nrf2 target genes and antioxidant activity were up-regulated in an Nrf2-dependent manner, suggesting that both Keap1a and Keap1b can function as Nrf2 inhibitors. We also analyzed the effects of the Nrf2 activator sulforaphane in these mutants and found that keap1a-, but not keap1b-, knockout larvae responded to sulforaphane, suggesting that the stress/chemical-sensing abilities of the two Keap1s are different. 10.1016/j.redox.2020.101667
    HpoR, a novel c-di-GMP effective transcription factor, links the second messenger's regulatory function to the mycobacterial antioxidant defense. Li Weihui,Li Meng,Hu Lihua,Zhu Jingpeng,Xie Zhiwei,Chen Jiarui,He Zheng-Guo Nucleic acids research Cyclic di-GMP (c-di-GMP) is a global signaling molecule that widely modulates diverse cellular processes. However, whether or not the c-di-GMP signal participates in regulation of bacterial antioxidant defense is unclear, and the involved regulators remain to be explored. In this study, we characterized HpoR as a novel c-di-GMP effective transcription factor and found a link between the c-di-GMP signal and the antioxidant regulation in Mycobacterium smegmatis. H2O2 stress induces c-di-GMP accumulation in M. smegmatis. High level of c-di-GMP triggers expression of a redox gene cluster, designated as hpoR operon, which is required for the mycobacterial H2O2 resistance. HpoR acts as an inhibitor of the hpoR operon and recognizes a 12-bp motif sequence within the upstream regulatory region of the operon. c-di-GMP specifically binds with HpoR at a ratio of 1:1. Low concentrations of c-di-GMP stimulate the DNA-binding activity of HpoR, whereas high concentrations of the signal molecule inhibit the activity. Strikingly, high level of c-di-GMP de-represses the intracellular association of HpoR with the regulatory region of the hpoR operon in M. smegmatis and enhances the mycobacterial H2O2 resistance. Therefore, we report a novel c-di-GMP effective regulator in mycobacteria, which extends the second messenger's function to bacterial antioxidant defense. 10.1093/nar/gky146
    Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast. Lokdarshi Ansul,Guan Ju,Urquidi Camacho Ricardo A,Cho Sung Ki,Morgan Philip W,Leonard Madison,Shimono Masaki,Day Brad,von Arnim Albrecht G The Plant cell Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56 in Arabidopsis (). Here, we show that conditions that generate reactive oxygen species (ROS) in the chloroplast, including dark-light transitions, high light, and the herbicide methyl viologen, rapidly activated GCN2 kinase, whereas mitochondrial and endoplasmic reticulum stress did not. GCN2 activation was light dependent and mitigated by photosynthesis inhibitors and ROS quenchers. Accordingly, the seedling growth of multiple Arabidopsis mutants was retarded under excess light conditions, implicating the GCN2-eIF2α pathway in responses to light and associated ROS. Once activated, GCN2 kinase preferentially suppressed the ribosome loading of mRNAs for functions such as mitochondrial ATP synthesis, the chloroplast thylakoids, vesicle trafficking, and translation. The mutant overaccumulated transcripts functionally related to abiotic stress, including oxidative stress, as well as innate immune responses. Accordingly, displayed defects in immune priming by the fungal elicitor, chitin. Therefore, we provide evidence that reactive oxygen species produced by the photosynthetic apparatus help activate the highly conserved GCN2 kinase, leading to eIF2α phosphorylation and thus affecting the status of the cytosolic protein synthesis apparatus. 10.1105/tpc.19.00751
    The protective role of PHB and its degradation products against stress situations in bacteria. Müller-Santos Marcelo,Koskimäki Janne J,Alves Luis Paulo Silveira,de Souza Emanuel Maltempi,Jendrossek Dieter,Pirttilä Anna Maria FEMS microbiology reviews Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates (PHA) are often found as carbon storage in Bacteria or Archaea, and polyhydroxybutyrate (PHB) is the more frequent. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented. 10.1093/femsre/fuaa058
    Targeting feed-forward signaling of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ axis with anti-TGFβ and folic acid attenuates formation of aortic aneurysms: Novel mechanisms and therapeutics. Huang Kai,Wang Yongchen,Siu Kin Lung,Zhang Yixuan,Cai Hua Redox biology In the present study we aimed to identify novel mechanisms and therapeutics for thoracic aortic aneurysm (TAA) in Fbn1 Marfan Syndrome (MFS) mice. The expression of mature/active TGFβ and its downstream effector NOX4 were upregulated while tetrahydrobiopterin (HB) salvage enzyme dihydrofolate reductase (DHFR) was downregulated in Fbn1 mice. In vivo treatment with anti-TGFβ completely attenuated NOX4 expression, restored DHFR protein abundance, reduced ROS production, recoupled eNOS and attenuated aneurysm formation. Intriguingly, oral administration with folic acid (FA) to recouple eNOS markedly alleviated expansion of aortic roots and abdominal aortas in Fbn1 mice, which was attributed to substantially upregulated DHFR expression and activity in the endothelium to restore tissue and circulating levels of HB. Notably, circulating HB levels were accurately predictive of tissue HB bioavailability, and negatively associated with expansion of aortic roots, indicating a novel biomarker role of circulating HB for TAA. Furthermore, FA diet abrogated TGFβ and NOX4 expression, disrupting the feed-forward loop to inactivate TGFβ/NOX4/DHFR/eNOS uncoupling axis in vivo and in vitro, while PTIO, a NO scavenger, reversed this effect in cultured human aortic endothelial cells (HAECs). Besides, expression of the rate limiting HB synthetic enzyme GTP cyclohydrolase 1 (GTPCHI), was downregulated in Fbn1 mice at baseline. In cultured HAECs, RNAi inhibition of fibrillin resulted in reduced GTPCHI expression, while this response was abrogated by anti-TGFβ, indicating TGFβ-dependent downregulation of GTPCHI in response to fibrillin deficiency. Taken together, our data for the first time reveal that uncoupled eNOS plays a central role in TAA formation, while anti-TGFβ and FA diet robustly abolish aneurysm formation via inactivation of a novel TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ feed-forward pathway. Correction of fibrillin deficiency is additionally beneficial via preservation of GTPCHI function. 10.1016/j.redox.2020.101757
    Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich's ataxia model. Rodríguez Laura R,Calap-Quintana Pablo,Lapeña-Luzón Tamara,Pallardó Federico V,Schneuwly Stephan,Navarro Juan A,Gonzalez-Cabo Pilar Redox biology Friedreich ataxia (FRDA) is a neurodegenerative disorder characterized by neuromuscular and neurological manifestations. It is caused by mutations in the FXN gene, which results in loss of the mitochondrial protein frataxin. Endoplasmic Reticulum-mitochondria associated membranes (MAMs) are inter-organelle structures involved in the regulation of essential cellular processes, including lipid metabolism and calcium signaling. In the present study, we have analyzed in both, unicellular and multicellular models of FRDA, calcium management and integrity of MAMs. We observed that function of MAMs is compromised in our cellular model of FRDA, which was improved upon treatment with antioxidants. In agreement, promoting mitochondrial calcium uptake was sufficient to restore several defects caused by frataxin deficiency in Drosophila Melanogaster. Remarkably, our findings describe for the first time frataxin as a member of the protein network of MAMs, where interacts with two of the main proteins implicated in endoplasmic reticulum-mitochondria communication. These results suggest a new role of frataxin, indicate that FRDA goes beyond mitochondrial defects and highlight MAMs as novel therapeutic candidates to improve patient's conditions. 10.1016/j.redox.2020.101762
    PRDX1 Counteracts Catastrophic Telomeric Cleavage Events That Are Triggered by DNA Repair Activities Post Oxidative Damage. Ahmed Wareed,Lingner Joachim Cell reports Telomeres are prone to damage inflicted by reactive oxygen species (ROS). Oxidized telomeric DNA and nucleotide substrates inhibit telomerase, causing telomere shortening. In addition, ROS can induce telomeric single-strand DNA breaks (SSBs). The peroxiredoxin-PRDX1 is enriched in telomeric chromatin and this counteracts ROS-induced telomere damage. Here, we identify DNA processing after oxidative stress as a main source of telomeric DNA cleavage events in the absence of PRDX1. In PRDX1-depleted cells, poly(ADP-ribose) polymerase (PARP)-dependent telomeric repair is often incomplete, giving persistent SSBs that are converted into telomeric double-strand breaks during replication, leading to rapid telomere shortening. Interestingly, PARP1 inhibition dampens telomere shortening, triggering stabilization of the homologous recombination (HR) factor BRCA1 and RAD51-mediated repair of telomeres. Overall, our results reveal that, in the absence PRDX1, incomplete PARP1-dependent DNA repair and competition between PARP1 and HR cause ROS-induced telomeric catastrophe. 10.1016/j.celrep.2020.108347
    Silencing COX-2 blocks PDK1/TRAF4-induced AKT activation to inhibit fibrogenesis during skeletal muscle atrophy. Chen Hongtao,Qian Zhanyang,Zhang Sheng,Tang Jian,Fang Le,Jiang Fan,Ge Dawei,Chang Jie,Cao Jiang,Yang Lei,Cao Xiaojian Redox biology Skeletal muscle atrophy with high prevalence can induce weakness and fatigability and place huge burden on both health and quality of life. During skeletal muscle degeneration, excessive fibroblasts and extracellular matrix (ECM) accumulated to replace and impair the resident muscle fiber and led to loss of muscle mass. Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in synthesis of prostaglandin, has been identified as a positive regulator in pathophysiological process like inflammation and oxidative stress. In our study, we found injured muscles of human subjects and mouse model overexpressed COX-2 compared to the non-damaged region and COX-2 was also upregulated in fibroblasts following TGF-β stimulation. Then we detected the effect of selective COX-2 inhibitor celecoxib on fibrogenesis. Celecoxib mediated anti-fibrotic effect by inhibiting fibroblast differentiation, proliferation and migration as well as inactivating TGF-β-dependent signaling pathway, non-canonical TGF-β pathways and suppressing generation of reactive oxygen species (ROS) and oxidative stress. In vivo pharmacological inhibition of COX-2 by celecoxib decreased tissue fibrosis and increased skeletal muscle fiber preservation reflected by less ECM formation and myofibroblast accumulation with decreased p-ERK1/2, p-Smad2/3, TGF-βR1, VEGF, NOX2 and NOX4 expression. Expression profiling further found that celecoxib could suppress PDK1 expression. The interaction between COX-2 and PDK1/AKT signaling remained unclear, here we found that COX-2 could bind to PDK1/AKT to form compound. Knockdown of COX-2 in fibroblasts by pharmacological inactivation or by siRNA restrained PDK1 expression and AKT phosphorylation induced by TGF-β treatment. Besides, si-COX-2 prevented TGF-β-induced K63-ubiquitination of AKT by blocking the interaction between AKT and E3 ubiquitin ligase TRAF4. In summary, we found blocking COX-2 inhibited fibrogenesis after muscle atrophy induced by injury and suppressed AKT signaling pathway by inhibiting upstream PDK1 expression and preventing the recruitment of TRAF4 to AKT, indicating that COX-2/PDK1/AKT signaling pathway promised to be target for treating muscle atrophy in the future. 10.1016/j.redox.2020.101774
    Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic. Shariev Artur,Menounos Spiro,Laos Alistair J,Laxman Pooja,Lai Donna,Hua Sheng,Zinger Anna,McRae Christopher R,Casbolt Llewellyn S,Combes Valery,Smith Greg,Hung Tzong-Tyng,Dixon Katie M,Thordarson Pall,Mason Rebecca S,Das Abhirup Redox biology Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu-Cu)-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant antioxidant, anti-inflammatory and immunomodulatory activities through beneficial modulation of several significant inflammatory cytokines in vitro and in vivo. We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be non-toxic, non-teratogenic and readily distributed in the body of mice. Moreover, it significantly accelerates excisional wound healing, reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation and attenuates age-associated oxidative stress in skin, demonstrating both skin regenerative and geroprotective properties of RM191A. 10.1016/j.redox.2020.101790
    Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. Thomson Gregory J,Hernon Claire,Austriaco Nicanor,Shapiro Rebecca S,Belenky Peter,Bennett Richard J The EMBO journal Understanding how cellular activities impact genome stability is critical to multiple biological processes including tumorigenesis and reproductive biology. The fungal pathogen Candida albicans displays striking genome dynamics during its parasexual cycle as tetraploid cells, but not diploid cells, exhibit genome instability and reduce their ploidy when grown on a glucose-rich "pre-sporulation" medium. Here, we reveal that C. albicans tetraploid cells are metabolically hyperactive on this medium with higher rates of fermentation and oxidative respiration relative to diploid cells. This heightened metabolism results in elevated levels of reactive oxygen species (ROS), activation of the ROS-responsive transcription factor Cap1, and the formation of DNA double-strand breaks. Genetic or chemical suppression of ROS levels suppresses each of these phenotypes and also protects against genome instability. These studies reveal how endogenous metabolic processes can generate sufficient ROS to trigger genome instability in polyploid C. albicans cells. We also discuss potential parallels with metabolism-induced instability in cancer cells and speculate that ROS-induced DNA damage could have facilitated ploidy cycling prior to a conventional meiosis in eukaryotes. 10.15252/embj.2019101597