加载中

    Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells. Liu Mingchao,Wu Qiong,Wang Mengling,Fu Yunhe,Wang Jiufeng Inflammation Intrauterine Escherichia coli infection after calving reduces fertility and causes major economic losses in the dairy industry. We investigated the protective effect of the probiotic Lactobacillus rhamnosus GR-1 on E. coli-induced cell damage and inflammation in primary bovine endometrial epithelial cells (BEECs). L. rhamnosus GR-1 reduced ultrastructure alterations and the percentage of BEECs apoptosis after E. coli challenge. Increased messenger RNA (mRNA) expression of immune response indicators, including pattern recognition receptors (toll-like receptor [TLR]2, TLR4, nucleotide-binding oligomerization domain [NOD]1, and NOD2), inflammasome proteins (NOD-like receptor family member pyrin domain-containing protein 3, apoptosis-associated speck-like protein, and caspase-1), TLR4 downstream adaptor molecules (myeloid differentiation antigen 88 [MyD88], toll-like receptor adaptor molecule 2 [TICAM2]), nuclear transcription factor kB (NF-kB), and the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-18, and interferon (IFN)-β, was observed following E. coli challenge. However, these increases were attenuated by L. rhamnosus GR-1 pretreatment. Our data indicate that L. rhamnosus GR-1 ameliorates the E. coli-induced disruption of cellular ultrastructure, subsequently reducing the percentage of BEECs apoptosis and limiting inflammatory responses, partly via attenuation of MyD88-dependent and MyD88-independent pathway activation. Certain probiotics could potentially prevent postpartum uterine diseases in dairy cows, ultimately reducing the use of antibiotics. 10.1007/s10753-016-0382-7