加载中

    Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Cinkornpumin Jessica K,Kwon Sin Young,Guo Yixin,Hossain Ishtiaque,Sirois Jacinthe,Russett Colleen S,Tseng Hsin-Wei,Okae Hiroaki,Arima Takahiro,Duchaine Thomas F,Liu Wanlu,Pastor William A Stem cell reports Human embryonic stem cells (hESCs) readily differentiate to somatic or germ lineages but have impaired ability to form extra-embryonic lineages such as placenta or yolk sac. Here, we demonstrate that naive hESCs can be converted into cells that exhibit the cellular and molecular phenotypes of human trophoblast stem cells (hTSCs) derived from human placenta or blastocyst. The resulting "transdifferentiated" hTSCs show reactivation of core placental genes, acquisition of a placenta-like methylome, and the ability to differentiate to extravillous trophoblasts and syncytiotrophoblasts. Modest differences are observed between transdifferentiated and placental hTSCs, most notably in the expression of certain imprinted loci. These results suggest that naive hESCs can differentiate to extra-embryonic lineage and demonstrate a new way of modeling human trophoblast specification and placental methylome establishment. 10.1016/j.stemcr.2020.06.003
    Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells. Xiao Lu,Ma Lishi,Wang Zhijian,Yu Yanhong,Lye Stephen J,Shan Yongli,Wei Yanxing Biochimica et biophysica acta. Molecular cell research The placenta is an essential organ for the fetus, but its regulatory mechanism for formation of functional trophoblast lineage remains elusive in humans. Although widely known in mice, TEAD4 and its downstream targets CDX2 and GATA3 have not been determined in human models. In this work, we used a human model of trophoblast transition from BAP (BMP4, A83-01 and PD173074)-treated human embryonic stem cells (hESCs) and performed multiple gain- and loss-of-function tests of TEAD4, CDX2 or GATA3 to study their roles during this process. Although hESCs with TEAD4 deletion maintain pluripotency, their trophoblast transition potentials are attenuated. This impaired trophoblast transition could be rescued by separately overexpressing TEAD4, CDX2 or GATA3. Furthermore, trophoblast transition from hESCs is also attenuated by knockout of CDX2 but remains unaffected with deletion of GATA3. However, CDX2-overexpressed hESCs maintain pluripotency, whereas overexpression of GATA3 in hESCs leads to spontaneous differentiation including trophoblast lineage. In brief, our findings using a human model of trophoblast transition from BAP-treated hESCs reveal transcription roles of TEAD4, CDX2 and GATA in humans that are different from those in mice. We hope that this evidence can aid in understanding the distinct transcriptional network regulating trophoblast development in humans. 10.1016/j.bbamcr.2020.118736
    Trophoblast lineage specific expression of the alternative splicing factor RBFOX2 suggests a role in placental development. Goldman-Wohl Debra,Greenfield Caryn,Eisenberg-Loebl Iris,Denichenko Polina,Jbara Amina,Karni Rotem,Ariel Ilana,Yagel Simcha Placenta INTRODUCTION:RBFOX2, an RNA-binding protein, controls tissue-specific alternative splicing of exons in diverse processes of development. The progenitor cytotrophoblast of the human placenta differentiates into either the syncytiotrophoblast, formed via cell fusion, or the invasive extravillous trophoblast lineage. The placenta affords a singular system where a role for RBFOX2 in both cell invasion and cell fusion may be studied. We investigated a role for RBFOX2 in trophoblast cell differentiation, as a foundation for investigations of RBFOX2 in embryo implantation and placental development. METHODS:Immunohistochemistry of RBFOX2 was performed on placental tissue sections from three trimesters of pregnancy and from pathological pregnancies. Primary trophoblast cell culture and immunofluorescence were employed to determine RBFOX2 expression upon cell fusion. Knockdown of RBFOX2 expression was performed with βhCG and syncytin-1 as molecular indicators of fusion. RESULTS:In both normal and pathological placentas, RBFOX2 expression was confined to the cytotrophoblast and the extravillous trophoblast, but absent from the syncytiotrophoblast. Additionally, we showed that primary trophoblasts that spontaneously fused in cell culture downregulated RBFOX2 expression. In functional experiments, knockdown expression of RBFOX2 significantly upregulated βhCG, while the upregulation of syncytin-1 did not reach statistical significance. DISCUSSION:RBFOX2, by conferring mRNA diversity, may act as a regulator switch in trophoblast differentiation to either the fusion or invasive pathways. By studying alternative splicing we further our understanding of placental development, yielding possible insights into preeclampsia, where expression of antiangiogenic isoforms produced through alternative splicing play a critical role in disease development and severity. 10.1016/j.placenta.2020.07.004
    Establishment and characterization of a new human first trimester Trophoblast cell line, AL07. Liu Hong,Wang Liling,Wang Yan,Zhu Qian,Aldo Paulomi,Ding Jiahui,Mor Gil,Liao Aihua Placenta INTRODUCTION:The limited cell number of primary trophoblasts and contamination of trophoblast cell lines promote us to develop a novel stable trophoblast cell line. METHOD OF STUDY:Primary trophoblast cells were isolated from first-trimester placenta and telomerase-induced immortalization was used to immortalize these cells. Subsets of cells were then evaluated by flow cytometry using CK7, HLA-G, CD45 and CD14, specific markers for trophoblast cells, extra-villous trophoblast, pan leucocyte and monocyte/macrophage, respectively. Immunofluorescence staining and immunocytochemistry were used to detect CK7 expression in trophoblast cells. The level of secreted human Chorionic Gonadotropin (hCG) was measured by electrochemiluminescence (ECL). The Bio-Plex MAGPIX System was used to analyze the cytokines and chemokines produced by AL07 cell line. RESULTS:We were able to isolate primary trophoblast cells from several first-trimester placentas. One clone, AL07 trophoblast cells, isolated from a week 7 placenta, was morphologically stable and positive for the expression of CK7 by immunofluorescence and immunocytochemistry staining. Characterization of AL07 cells reveled that they are CD45 or CD14 negative and had constitutive secretion of hCG and low HLA-G expression. Furthermore, clone AL07 secret high levels of several cytokines and chemokines, including IL-6, IL-8 and VEGF, and moderately secreted MCP-1 IP-10 and RANTES. DISCUSSION:We report the successful isolation, immortalization and characterization of AL07 cells, a novel cell clone isolated from first trimester human placenta. The clone is free of contamination of immune cells, and exhibits similar cytokine profile as other trophoblast cell lines. This new cytotrophoblast-like AL07 cell, can be a valuable tool for in-vitro trophoblast studies in the future. 10.1016/j.placenta.2020.08.013