logo logo
Paternal genetic contribution influences fetal vulnerability to maternal alcohol consumption in a rat model of fetal alcohol spectrum disorder. PloS one BACKGROUND:Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD). The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known. METHODOLOGY/PRINCIPAL FINDINGS:Using the outbred Sprague-Dawley (SD) and inbred Brown Norway (BN) rat strains as well as their reciprocal crosses, we administered ethanol (E), pair-fed (PF), or control (C) diets to the pregnant dams. The dams' plasma levels of free thyroxine (fT4), triiodothyronine (T3), free T3 (fT3), and thyroid stimulating hormone (TSH) were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21) to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses. CONCLUSIONS:SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding). In summary, these novel findings demonstrate both maternal and paternal genetic contributions to in utero vulnerability to alcohol, refining our understanding of the genetically-based heterogeneity seen in human FASD. 10.1371/journal.pone.0010058
Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. Binder Natalie K,Hannan Natalie J,Gardner David K PloS one Worldwide, 48% of adult males are overweight or obese. An association between infertility and excessive body weight is now accepted, although focus remains primarily on females. It has been shown that parental obesity results in compromised embryo development, disproportionate changes in embryo metabolism and reduced blastocyst cell number. The aim of this study was to determine whether paternal obesity has negative effects on the resultant embryo. Specifically, using in vitro fertilisation (IVF), we wanted to isolate the functional effects of obesity on sperm by examining the subsequent embryo both pre- and post-implantation. Epididymal sperm was collected from age matched normal and obese C57BL/6 mice and cryopreserved for subsequent IVF with oocytes collected from Swiss females (normal diet/weight). Obesity was induced in male mice by feeding a high fat diet of 22% fat for 10 weeks. Resultant embryos were cultured individually and development monitored using time-lapse microscopy. Paternal obesity resulted in a significant delay in preimplantation embryo development as early as syngamy (P<0.05). Metabolic parameters were measured across key developmental stages, demonstrating significant reduction in mitochondrial membrane potential (P<0.01). Blastocysts were stained to determine trophectoderm (TE) and inner cell mass (ICM) cell numbers, revealing significant differences in the ratio of cell allocation to TE and ICM lineages (P<0.01). Functional studies examining blastocyst attachment, growth and implantation demonstrated that blastocysts derived from sperm of obese males displayed significantly reduced outgrowth on fibronectin in vitro (P<0.05) and retarded fetal development in vivo following embryo transfer (P<0.05). Taken together, these data clearly demonstrate that paternal obesity has significant negative effects on the embryo at a variety of key early developmental stages, resulting in delayed development, reduced placental size and smaller offspring. 10.1371/journal.pone.0052304
Effects of reduced Gcm1 expression on trophoblast morphology, fetoplacental vascularity, and pregnancy outcomes in mice. Bainbridge Shannon A,Minhas Abhijeet,Whiteley Kathie J,Qu Dawei,Sled John G,Kingdom John C P,Adamson S Lee Hypertension (Dallas, Tex. : 1979) Preeclampsia is a life-threatening disorder characterized by maternal gestational hypertension and proteinuria that results from placental dysfunction. Placental abnormalities include abnormal syncytiotrophoblast and a 50% reduction in placental expression of the transcription factor Gcm1. In mice, homozygous deletion of Gcm1 prevents syncytiotrophoblast differentiation and is embryonic lethal. We used heterozygous Gcm1 mutants (Gcm1(+/-)) to test the hypothesis that hypomorphic expression of placental Gcm1 causes defective syncytiotrophoblast differentiation and maternal and placental phenotypes that resemble preeclampsia. We mated wild-type female mice with Gcm1(+/-) fathers to obtain wild-type mothers carrying ≈50% Gcm1(+/-) conceptuses. Gcm1(+/-) placentas had syncytiotrophoblast abnormalities including reduced gene expression of Gcm1-regulated SynB, elevated expression of sFlt1, a thickened interhemal membrane separating maternal and fetal circulations, and electron microscopic evidence in syncytiotrophoblast of necrosis and impaired maternal-fetal transfer. Fetoplacental vascularity was quantified by histomorphometry and microcomputed tomography imaging. In Gcm1(+/-), it was ≈30% greater than wild-type littermates, whereas placental vascular endothelial growth factor A (Vegfa) expression and fetal and placental weights did not differ. Wild-type mothers carrying Gcm1(+/-) conceptuses developed late gestational hypertension (118±2 versus 109.6±0.7 mm Hg in controls; P<0.05). We next correlated fetoplacental vascularity with placental Gcm1 expression in human control and pathological pregnancies and found that, as in mice, fetoplacental vascularity increased when GCM1 protein expression decreased (R(2)=-0.45; P<0.05). These results support a role for reduced placental Gcm1 expression as a causative factor in defective syncytiotrophoblast differentiation and maternal and placental phenotypes in preeclampsia in humans. 10.1161/HYPERTENSIONAHA.111.183939
Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. Claycombe-Larson Kate G,Bundy Amy N,Roemmich James N The Journal of nutritional biochemistry We previously have shown that male offspring (F1) of fathers (F0) fed a high-fat (HF) diet and that exercised had greater skeletal muscle insulin signaling and reduced type 2 diabetes mellitus (T2DM) risk compared to fathers fed HF diet and that remained sedentary. The current study extends this work by hypothesizing that F0 HF diet and exercise regulate F1 T2DM risk by alterations in placental tissue growth via changes in sperm miRNA expression. To test these hypotheses, 3-week-old male C57BL/6 mice were fed a normal-fat diet (16% fat) or an HF diet (45% fat) and assigned to either voluntary wheel running exercise or cage activity for 3 months. Results showed that F0 sperm miRNA 193b expression was decreased while miRNA 204 was increased by paternal exercise. Protein expression of dimethylated histone 3 lysine 9 was decreased with F0 HF diet. Placental and fetal tissue weights were decreased by F0 HF diet in F1 males. Placental interleukin-1β and tumor necrosis factor (TNF)-α mRNA expression was reduced by paternal exercise, while nutrient transporter mRNA expression was decreased by paternal HF diet only in the placentae of F1 females. Treatment of primary placental cell with miRNA 193b inhibited TNF-α mRNA expression, and treatment of TNF-α decreased SLC38a2 mRNA expression. Moreover, paternal exercise increased body weight at weaning in a female offspring. These results demonstrate that placental tissue weight, placental nutrient transporter gene expression and fetal weights are altered by paternal exercise, while placental inflammatory gene expression is influenced by paternal exercise in offspring in a sex-specific manner. 10.1016/j.jnutbio.2020.108373
Placental weight in relation to maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations among subfertile couples. Mustieles Vicente,Mínguez-Alarcón Lidia,Christou George,Ford Jennifer B,Dimitriadis Irene,Hauser Russ,Souter Irene,Messerlian Carmen, Environmental research INTRODUCTION:Phthalates are known reproductive toxicants that reduce placental and fetal weight in experimental animal studies. Although phthalate exposure has been associated with reduced birth weight in humans, there is limited epidemiologic evidence on whether the placenta is also affected. OBJECTIVE:To assess whether maternal and paternal preconception and prenatal urinary phthalate metabolite concentrations are associated with placental weight, and the birth weight: placental weight (BW:PW) ratio among singletons conceived by subfertile couples. METHODS:The present analysis included 132 mothers and 68 fathers, and their corresponding 132 singletons recruited in an academic hospital fertility center in Boston, Massachusetts. Urinary concentrations of eleven phthalate metabolites were measured and averaged in multiple paternal (n = 196) and maternal (n = 596) preconception, and maternal prenatal (n = 328) samples. Placental weight and birth weight (grams) were abstracted from delivery records, and the BW:PW was calculated. We estimated the association of natural log-phthalate metabolite concentrations across windows of exposure with placental weight and the BW:PW ratio using multivariable linear regression models, adjusting for a priori covariates. RESULTS:In adjusted models, each log-unit increase in paternal urinary concentrations of the sum of di-(2-ethylhexyl) phthalate (ΣDEHP) metabolites was associated with a 24 g (95% CI: -48, -1) decrease in placental weight. We also observed a significant negative association between maternal preconception monoethyl phthalate (MEP) metabolite concentrations and the BW:PW ratio (β = -0.26; 95%CI: -0.49, -0.04). Additionally, each log-unit increase in prenatal MEP metabolite concentrations was associated with a 24 g (95% CI: -41, -7) decrease in placental weight. CONCLUSIONS:Our results suggest that certain paternal and maternal urinary phthalate metabolites may affect placental weight and the BW:PW ratio. However, given the small sample size within a subfertile cohort and the novelty of these findings, more studies are needed to confirm the present results. 10.1016/j.envres.2018.11.022
DNA methylation-independent growth restriction and altered developmental programming in a mouse model of preconception male alcohol exposure. Chang Richard C,Skiles William M,Chronister Sarah S,Wang Haiqing,Sutton Gabrielle I,Bedi Yudhishtar S,Snyder Matthew,Long Charles R,Golding Michael C Epigenetics The preconception environment is a significant modifier of dysgenesis and the development of environmentally-induced disease. To date, fetal alcohol spectrum disorders (FASDs) have been exclusively associated with maternal exposures, yet emerging evidence suggests male-inherited alterations in the developmental program of sperm may be relevant to the growth-restriction phenotypes of this condition. Using a mouse model of voluntary consumption, we find chronic preconception male ethanol exposure associates with fetal growth restriction, decreased placental efficiency, abnormalities in cholesterol trafficking, sex-specific alterations in the genetic pathways regulating hepatic fibrosis, and disruptions in the regulation of imprinted genes. Alterations in the DNA methylation profiles of imprinted loci have been identified in clinical studies of alcoholic sperm, suggesting the legacy of paternal drinking may transmit via heritable disruptions in the regulation of imprinted genes. However, the capacity of sperm-inherited changes in DNA methylation to broadly transmit environmentally-induced phenotypes remains unconfirmed. Using bisulphite mutagenesis and second-generation deep sequencing, we find no evidence to suggest that these phenotypes or any of the associated transcriptional changes are linked to alterations in the sperm-inherited DNA methylation profile. These observations are consistent with recent studies examining the male transmission of diet-induced phenotypes and emphasize the importance of epigenetic mechanisms of paternal inheritance beyond DNA methylation. This study challenges the singular importance of maternal alcohol exposures and suggests paternal alcohol abuse is a significant, yet overlooked epidemiological factor complicit in the genesis of alcohol-induced growth defects, and may provide mechanistic insight into the failure of FASD children to thrive postnatally. 10.1080/15592294.2017.1363952
Paternal developmental toxicant exposure is associated with epigenetic modulation of sperm and placental Pgr and Igf2 in a mouse model. Ding Tianbing,Mokshagundam Shilpa,Rinaudo Paolo F,Osteen Kevin G,Bruner-Tran Kaylon L Biology of reproduction Preterm birth (PTB), parturition prior to 37 weeks' gestation, is the leading cause of neonatal mortality. The causes of spontaneous PTB are poorly understood; however, recent studies suggest that this condition may arise as a consequence of the parental fetal environment. Specifically, we previously demonstrated that developmental exposure of male mice (F1 animals) to the environmental endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was associated with reduced sperm quantity/quality in adulthood and control female partners frequently delivered preterm. Reproductive defects persisted in the F2 and F3 descendants, and spontaneous PTB was common. Reproductive changes in the F3 males, the first generation without direct TCDD exposure, suggest the occurrence of epigenetic alterations in the sperm, which have the potential to impact placental development. Herein, we conducted an epigenetic microarray analysis of control and F1 male-derived placentae, which identified 2171 differentially methylated regions, including the progesterone receptor (Pgr) and insulin-like growth factor (Igf2). To assess if Pgr and Igf2 DNA methylation changes were present in sperm and persist in future generations, we assessed methylation and expression of these genes in F1/F3 sperm and F3-derived placentae. Although alterations in methylation and gene expression were observed, in most tissues, only Pgr reached statistical significance. Despite the modest gene expression changes in Igf2, offspring of F1 and F3 males consistently exhibited IUGR. Taken together, our data indicate that paternal developmental TCDD exposure is associated with transgenerational placental dysfunction, suggesting epigenetic modifications within the sperm have occurred. An evaluation of additional genes and alternative epigenetic mechanisms is warranted. 10.1093/biolre/ioy111
Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Bromfield John J,Schjenken John E,Chin Peck Y,Care Alison S,Jasper Melinda J,Robertson Sarah A Proceedings of the National Academy of Sciences of the United States of America Paternal characteristics and exposures influence physiology and disease risks in progeny, but the mechanisms are mostly unknown. Seminal fluid, which affects female reproductive tract gene expression as well as sperm survival and integrity, provides one potential pathway. We evaluated in mice the consequences for offspring of ablating the plasma fraction of seminal fluid by surgical excision of the seminal vesicle gland. Conception was substantially impaired and, when pregnancy did occur, placental hypertrophy was evident in late gestation. After birth, the growth trajectory and metabolic parameters of progeny were altered, most profoundly in males, which exhibited obesity, distorted metabolic hormones, reduced glucose tolerance, and hypertension. Altered offspring phenotype was partly attributable to sperm damage and partly to an effect of seminal fluid deficiency on the female tract, because increased adiposity was also evident in adult male progeny when normal two-cell embryos were transferred to females mated with seminal vesicle-excised males. Moreover, embryos developed in female tracts not exposed to seminal plasma were abnormal from the early cleavage stages, but culture in vitro partly alleviated this. Absence of seminal plasma was accompanied by down-regulation of the embryotrophic factors Lif, Csf2, Il6, and Egf and up-regulation of the apoptosis-inducing factor Trail in the oviduct. These findings show that paternal seminal fluid composition affects the growth and health of male offspring, and reveal that its impact on the periconception environment involves not only sperm protection but also indirect effects on preimplantation embryos via oviduct expression of embryotrophic cytokines. 10.1073/pnas.1305609111
Aquaporin-1, a New Maternally Expressed Gene, Regulates Placental Development in the Mouse. Guo Jing,He Hongjuan,Liu Hui,Liu Qi,Zhang Lili,Liu Boqi,Sugimoto Kenkichi,Wu Qiong Biology of reproduction Imprinted genes play an important role in placental and embryonic development. Abnormalities in their regulation can result in placental and embryonic dysplasia, leading to congenital diseases. The imprinting state, expression, and function of aquaporin-1 (Aqp1) were explored in knockout mice by imprinting analysis, real-time PCR, and immunohistochemistry. In the present study, Aqp1 was identified as a new, imprinted, and placenta-specific maternally expressed gene in the mouse. Compared with wild-type Aqp1(+/+) mice, there was significant placental and embryonic overgrowth in Aqp1(-/+) (loss of maternal allele) and Aqp1(-/-) mice, but not in Aqp1(+/-) (loss of paternal allele) mice at Embryonic Day (E) 12.5-E18.5. In addition, the masses of Postnatal Day 0 (P0) embryos (Aqp1(-/-) and Aqp1(-/+)) were highest among the four types. In Aqp1(-/+) and Aqp1(-/-) mice, phenotypic analysis indicated that the number and branching of blood vessels, as well as the labyrinth area, increased significantly in placentae of E12.5-E18.5 mice. Moreover, there were abnormalities in the placental junctional zone and the labyrinthine zone at E15.5. Quantitative analysis showed that Aqp1 expression decreased significantly in the placentae of Aqp1(-/+) and Aqp1(-/-) mice at E15.5, and that the AQP1 protein expression signals were detected weakly in the decidual and spongioblast layers. Our results demonstrate that Aqp1 is maternally expressed in the placenta, and that its deficiency resulted in placental abnormalities in the mouse. Aqp1 may have a specific inhibitory role in mouse placental development. These results provide new insights for the treatment of diseases relating to placental and embryonic development. 10.1095/biolreprod.116.138636
Paternally expressed genes predominate in the placenta. Wang Xu,Miller Donald C,Harman Rebecca,Antczak Douglas F,Clark Andrew G Proceedings of the National Academy of Sciences of the United States of America The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting. 10.1073/pnas.1308998110
Intrauterine hyperglycemia induces intergenerational Dlk1-Gtl2 methylation changes in mouse placenta. Jiang Ying,Yu Yi-Chen,Ding Guo-Lian,Gao Qian,Chen Feng,Luo Qiong Oncotarget An intrauterine hyperglycemic environment has long-lasting effects on the offspring. Recent studies focused on fetal tissues, whereas we studied the development and molecular alteration of the placenta. By intercrossing male and female adult control (C) and first-generation offspring mice with gestational diabetes mellitus (F1-GDM), we obtained four groups of second generation (F2) offspring: 1) C♂-C♀, 2) C♂-GDM♀, 3) GDM♂-C♀, 4) GDM♂- GDM♀. Placental weights in F1-GDM offspring were lower than in the control group. Placental weights in F2-offspring decreased through the paternal line. Placental RNA was extracted and analyzed using microarrays on day18.5 of pregnancy. This revealed 35 upregulated imprinted genes and 10 down-regulated imprinted genes. Dlk1and Gtl2 were especially down-regulated and up-regulated, respectively, due to their abnormal methylation status. These findings suggest that intrauterine hyperglycemia decreased placental weight in the first generation, and this was transmitted paternally to the second generation in mice. They also suggest intrauterine hyperglycemia leads to abnormal placental Dlk1-Gtl2 expression due to DNA methylation in first and second generation mice. 10.18632/oncotarget.23976
When two obese parents are worse than one! Impacts on embryo and fetal development. McPherson N O,Bell V G,Zander-Fox D L,Fullston T,Wu L L,Robker R L,Lane M American journal of physiology. Endocrinology and metabolism The prevalence of overweight and obesity in reproductive-age adults is increasing worldwide. While the effects of either paternal or maternal obesity on gamete health and subsequent fertility and pregnancy have been reported independently, the combination of having both parents overweight/obese on fecundity and offspring health has received minimal attention. Using a 2 × 2 study design in rodents we established the relative contributions of paternal and maternal obesity on fetal and embryo development and whether combined paternal and maternal obesity had an additive effect. Here, we show that parental obesity reduces fetal and placental weights without altering pregnancy establishment and is not dependent on an in utero exposure to a high-fat diet. Interestingly combined parental obesity seemed to accumulate both the negative influences of paternal and maternal obesity had alone on embryo and fetal health rather than an amplification, manifested as reduced embryo developmental competency, reduced blastocyst cell numbers, impaired mitochondrial function, and alterations to active and repressive embryonic chromatin marks, resulting in aberrant placental gene expression and reduced fetal liver mtDNA copy numbers. Further understanding both the maternal cytoplasmic and paternal genetic interactions during this early developmental time frame will be vital for understanding how developmental programming is regulated and for the proposition of interventions to mitigate their effects. 10.1152/ajpendo.00230.2015