logo logo
Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Arbibe L,Mira J P,Teusch N,Kline L,Guha M,Mackman N,Godowski P J,Ulevitch R J,Knaus U G Nature immunology Mammalian Toll-like receptors (TLRs) are expressed on innate immune cells and respond to the membrane components of Gram-positive or Gram-negative bacteria. When activated, they convey signals to transcription factors that orchestrate the inflammatory response. However, the intracellular signaling events following TLR activation are largely unknown. Here we show that TLR2 stimulation by Staphylococcus aureus induces a fast and transient activation of the Rho GTPases Rac1 and Cdc42 in the human monocytic cell line THP-1 and in 293 cells expressing TLR2. Dominant-negative Rac1N17, but not dominant-negative Cdc42N17, block nuclear factor-kappa B (NF-kappa B) transactivation. S. aureus stimulation causes the recruitment of active Rac1 and phosphatidylinositol-3 kinase (PI3K) to the TLR2 cytosolic domain. Tyrosine phosphorylation of TLR2 is required for assembly of a multiprotein complex that is necessary for subsequent NF-kappa B transcriptional activity. A signaling cascade composed of Rac1, PI3K and Akt targets nuclear p65 transactivation independently of I kappa B alpha degradation. Thus Rac1 controls a second, I kappa B-independent, pathway to NF-kappa B activation and is essential in innate immune cell signaling via TLR2. 10.1038/82797
Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Schink Anne,Naumoska Katerina,Kitanovski Zoran,Kampf Christopher Johannes,Fröhlich-Nowoisky Janine,Thines Eckhard,Pöschl Ulrich,Schuppan Detlef,Lucas Kurt Food & function PURPOSE:Inflammatory processes are involved in many diseases. The bark of Cinnamomum verum and its extracts are well known for anti-inflammatory effects, but the underlying active compounds and chemical mechanisms are not yet fully identified. The objective of this study was to elucidate how cinnamon extract, specifically active compounds, and their combinations influence the signaling pathways of inflammation, especially through toll-like receptors TLR2 and TLR4. METHODS:Bioassay-guided fractionation was performed for standard ethanolic cinnamon extract using high performance liquid chromatography followed by compound identification in the determined active fractions by high-resolution mass spectrometry and gas chromatography-mass spectrometry. THP-1 monocytes were pre-incubated with cinnamon extract, cinnamon fractions or its compounds and stimulated with lipopolysaccharides (LPS), followed by determination of interleukin 8 (IL-8) secretion, and phosphorylation of protein kinase B (Akt), nuclear factor (NF)-κB inhibitor alpha (IκBα) and p38. Furthermore, testing was performed in stimulated HEK-TLR2 and HEK-TLR4 reporter cells for direct receptor agonistic effects. RESULTS:Among the identified compounds, trans-cinnamaldehyde and p-cymene significantly reduced the LPS-dependent IL-8 secretion in THP-1 monocytes. Synergistic anti-inflammatory effects were observed for combinations of trans-cinnamaldehyde with p-cymene, cinnamyl alcohol or cinnamic acid. Moreover, cinnamon extract as well as trans-cinnamaldehyde and p-cymene mitigated the phosphorylation of Akt and IκBα. CONCLUSIONS:Trans-cinnamaldehyde and p-cymene contribute to the strong anti-inflammatory effects of cinnamon extract. Furthermore, our experiments indicate that also synergistic effects among compounds that do not exhibit anti-inflammatory effects themselves might be present to positively influence the beneficial effects of cinnamon bark extract. 10.1039/c8fo01286e
Selective MyD88-dependent pathway inhibition by the cyanobacterial natural product malyngamide F acetate. Villa Francisco A,Lieske Kelly,Gerwick Lena European journal of pharmacology In response to evolutionary selective pressure, prokaryotes have developed a rich array of secondary metabolites, some of which may be inhibitory to the innate immune system and the inflammatory response in vertebrates. We utilized the RAW264.7 macrophage cell line stimulated with LPS in a nitric oxide (NO) assay to screen for compounds with immunomodulatory activities from a library of marine natural products, and found that the malyngamide structure class, found commonly in the marine cyanobacterium Lyngbya majuscula, has potent activity. Several of the malyngamides were found to possess IC50 values of 5.4-18microM. Malyngamide F acetate exhibited strong concentration-dependent anti-inflammatory activity in the NO assay with an IC50 of 7.1microM and with no cytotoxicity at the concentrations tested. Subsequent real-time PCR of selected genes revealed a unique cytokine profile after LPS stimulation (TLR4) with decreased expression of iNOS, IL-1beta, IL-6, and IL-10, but increased TNF-alpha expression. Additional experiments utilizing CpG and Poly I:C stimulation to selectively activate the MyD88-dependent and -independent pathways via TLR9 and TLR3 substantiated the finding that malyngamide F acetate selectively inhibits the MyD88-dependent pathway. To our knowledge, this is the first report of a natural product inhibiting the MyD88-dependent pathway. 10.1016/j.ejphar.2009.12.002
The effect of phloretin on synaptic proteins and adult hippocampal neurogenesis in Aβ (1-42)-injected male Wistar rats. Ghumatkar Priya,Peshattiwar Vaibhavi,Patil Sachin,Muke Suraj,Whitfield David,Howlett David,Francis Paul,Sathaye Sadhana The Journal of pharmacy and pharmacology OBJECTIVES:Considering the deleterious effect of Aβ1-42, a study was designed to evaluate the effect of phloretin on altered synaptic proteins and adult hippocampal neurogenesis in Aβ1-42-injected Wistar rats. METHODS:The rats were pretreated with 5 mg/kg p.o dose of phloretin and donepezil (positive control) for 28 days, followed by intrahippocampal injections of aggregated Aβ1-42. After termination, perfused brains were isolated and subjected to Western blot and immunohistochemistry (IHC) analysis. KEY FINDINGS:The Western blot revealed that Aβ1-42-injected rats had significantly low levels of synaptophysin as compared to sham control. Phloretin pretreatment significantly protected the presynaptic protein synaptophysin against the effects of Aβ1-42. There were no significant changes in the levels of PSD95 between different groups. The IHC findings showed that Aβ1-42 significantly reduced the Ki67 and DCX in the dentate gyrus as compared to sham control. However, phloretin significantly improved the number of Ki67- and DCX-positive neurons in the dentate gyrus region as compared to Aβ1-42 group. CONCLUSIONS:This study demonstrated the protective effect of phloretin on synaptophysin and adult neuronal proliferating cells in Aβ1-42-injected rats. The encouraging findings highlight the potential of phloretin as a dietary supplement targeting key therapeutic mechanisms in neurodegenerative disorders such as AD. 10.1111/jphp.12925
Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity. Nature immunology Consumption of a high-energy Western diet triggers mild adaptive β cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of β cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of β cells, but not that of α cells, leading to enlarged β cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of β cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse β cell failure in patients with diabetes. 10.1038/s41590-019-0396-z