logo logo
Revisiting the role of ABC transporters in multidrug-resistant cancer. Robey Robert W,Pluchino Kristen M,Hall Matthew D,Fojo Antonio T,Bates Susan E,Gottesman Michael M Nature reviews. Cancer Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 (ABCB1), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance-associated protein 1 (MRP1; encoded by ABCC1)), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re-evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood-brain barrier. 10.1038/s41568-018-0005-8
Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Li Wen,Zhang Han,Assaraf Yehuda G,Zhao Kun,Xu Xiaojun,Xie Jinbing,Yang Dong-Hua,Chen Zhe-Sheng Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. 10.1016/j.drup.2016.05.001
The multi-factorial nature of clinical multidrug resistance in cancer. Assaraf Yehuda G,Brozovic Anamaria,Gonçalves Ana Cristina,Jurkovicova Dana,Linē Aija,Machuqueiro Miguel,Saponara Simona,Sarmento-Ribeiro Ana Bela,Xavier Cristina P R,Vasconcelos M Helena Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy Curative cancer therapy remains a major challenge particularly in cancers displaying multidrug resistance (MDR). The MDR phenotype is characterized by cross-resistance to a wide array of anticancer drugs harboring distinct structures and mechanisms of action. The multiple factors involved in mediating MDR may include host factors, tumor factors as well as tumor-host interactions. Among the host factors are genetic variants and drug-drug interactions. The plethora of tumor factors involves decreased drug uptake primarily via impaired influx transporters, increased drug efflux predominantly due to the overexpression of MDR efflux transporters of the ATP-binding cassette superfamily or due to drug efflux mediated by extracellular vesicles (EVs) or drug-loaded lysosomes undergoing exocytosis, deregulation of cell death mechanisms (i.e. anti-apoptotic modalities), enhanced DNA damage repair, epigenetic alterations and/or deregulation of microRNAs. The intratumor heterogeneity and dynamics, along with cancer stem cell plasticity, are important tumor factors. Among the tumor-host interactions are the role of the tumor microenvironment, selective pressure of various stressor conditions and agents, acidic pH and the intracellular transfer of traits mediated by EVs. The involvement of these diverse factors in MDR, highlights the need for precision medicine and real-time personalized treatments of individual cancer patients. In this review, written by a group of researchers from COST Action STRATAGEM "New diagnostic and therapeutic tools against multidrug resistant tumors", we aim to bring together these multidisciplinary and interdisciplinary features of MDR cancers. Importantly, it is becoming increasingly clear that deciphering the molecular mechanisms underlying anticancer drug resistance, will pave the way towards the development of novel precision medicine treatment modalities that are able to surmount distinct and well-defined mechanisms of anticancer drug resistance. 10.1016/j.drup.2019.100645