logo logo
Development of prognosis model for colon cancer based on autophagy-related genes. Wang Xu,Xu Yuanmin,Li Ting,Chen Bo,Yang Wenqi World journal of surgical oncology BACKGROUND:Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. METHODS:Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database ( https://portal.gdc.cancer.gov ). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. RESULTS:Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. CONCLUSION:The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment. 10.1186/s12957-020-02061-w
Expression and clinical significance of p62 protein in colon cancer. Lei Cheng,Zhao Bing,Liu Lin,Zeng Xiangyue,Yu Zhen,Wang Xiyan Medicine p62 is a multifunctional protein involved in multiple cellular processes including proliferation, drug sensitivity and autophagy-associated cancer cell growth. However, the role of p62 in colon cancer remains controversial. Here we investigated the expression of p62 protein in colon cancer and its clinical significance.Patients with colon adenocarcinoma who underwent resection at the Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital) were retrospectively analyzed. The expression of p62 protein in tumor tissues and adjacent normal tissues was detected by immunohistochemistry and western-blotting. Real-time quantitative polymerase chain reaction was used to detect the expression level of p62 messenger ribonucleic acid in specimens. Progression-free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meier method and the log-rank test.A total of 85 colon cancer patients were enrolled, including 55 (64.71%) patients with high p62 expression, and 30 (35.29%) patients with low p62 expression. The transcription and expression level of p62 in colon cancer tissues were higher than those in adjacent normal tissues (P < .01). High expression of p62 was an independent risk factor for the poor prognosis (PFS and OS) of colon cancer.p62 may be a potential indicator of determining the progression and prognosis evaluation of colon cancer. 10.1097/MD.0000000000018791
Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells. Lai Ming-Chih,Chang Chiao-May,Sun H Sunny PloS one Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia. 10.1371/journal.pone.0153627
Knockdown of Beclin-1 impairs epithelial-mesenchymal transition of colon cancer cells. Shen Hong,Yin Ling,Deng Ganlu,Guo Cao,Han Ying,Li Yiyi,Cai Changjing,Fu Yaojie,Liu Shanshan,Zeng Shan Journal of cellular biochemistry Activation of autophagy significantly affects cancer cell behaviors, such as proliferation, differentiation, and invasiveness. Epithelial-to-mesenchymal transition (EMT) as an initial step of malignant transformation of cancer cells was linked to the activation of autophagy, but the detailed molecular mechanisms are still unknown. The present study investigates the effects of Beclin-1, a key molecule involved in activation of autophagy, on EMT of colon cancer cells. The normal colon epithelia cell line of CCD-18Co and six colon cancer cell lines with different expression levels of Beclin-1 were used in this study. The activation of autophagy and EMT markers of cancer cells were monitored by Western blotting and quantitative real-time PCR assay in the presence or absence of rapamycin (autophagy activator) and 3-MA (autophagy inhibitor). The expression of Beclin-1 in selected cell lines was modulated using small interfering RNA, and consequentially EMT markers, and cancer cell behaviors including migration and invasion, were also explored. Activation or inhibition of autophagy in colon cancer cells had positive or negative impacts on the expression of EMT markers and malignant behaviors such as cell migration and invasion. Knockdown of beclin-1 by siRNA apparently inhibited the activation of autophagy induced by rapamycin, consequentially resulted in suppression of EMT and attenuation of invasiveness of colon cancer cells. The results in this study demonstrated an association between activation of autophagy and EMT in colon cancer cells. The results showed suppression of Beclin-1 expression significantly reduced EMT and invasive behaviors in colon cancer cells. 10.1002/jcb.26912
Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress. Sakitani Kosuke,Hirata Yoshihiro,Hikiba Yohko,Hayakawa Yoku,Ihara Sozaburo,Suzuki Hirobumi,Suzuki Nobumi,Serizawa Takako,Kinoshita Hiroto,Sakamoto Kei,Nakagawa Hayato,Tateishi Keisuke,Maeda Shin,Ikenoue Tsuneo,Kawazu Shoji,Koike Kazuhiko BMC cancer BACKGROUND:Although some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer. METHODS:We crossed K19 (CreERT) and Atg5 (flox/flox) mice to generate Atg5 (flox/flox)/K19 (CreERT) mice. Atg5 (flox/flox)/K19 (CreERT) mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins. RESULTS:Colon tumors in Atg5 (flox/flox)/K19 (CreERT) mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5 (flox/flox)/K19 (CreERT) mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5 (flox/flox)/K19 (CreERT) mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells. CONCLUSIONS:Blocking autophagy has potential in the treatment of colon cancer by inducing apoptosis via p53 and ER stress, and suppressing the UPR pathway is a valid strategy to overcome resistance to autophagic inhibition. 10.1186/s12885-015-1789-5
Functions and Implications of Autophagy in Colon Cancer. Devenport Samantha N,Shah Yatrik M Cells Autophagy is an essential function to breakdown cellular proteins and organelles to recycle for new nutrient building blocks. In colorectal cancer, the importance of autophagy is becoming widely recognized as it demonstrates both pro- and anti-tumorigenic functions. In colon cancer, cell autonomous and non-autonomous roles for autophagy are essential in growth and progression. However, the mechanisms downstream of autophagy (to reduce or enhance tumor growth) are not well known. Additionally, the signals that activate and coordinate autophagy for tumor cell growth and survival are not clear. Here, we highlight the context- and cargo-dependent role of autophagy in proliferation, cell death, and cargo breakdown. 10.3390/cells8111349
Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Wen Yang-An,Xing Xiaopeng,Harris Jennifer W,Zaytseva Yekaterina Y,Mitov Mihail I,Napier Dana L,Weiss Heidi L,Mark Evers B,Gao Tianyan Cell death & disease Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells. 10.1038/cddis.2017.21
RACK1 promotes tumorigenicity of colon cancer by inducing cell autophagy. Cell death & disease RACK1 is upregulated in the various types of human cancers, and considered to play a role in the development and progression of human cancer. However, the role and mechanism of RACK in the colon cancer are poorly understood. In this study, we detected RACK1 expression in 63 normal colonic mucosa, 60 colonic inflammatory polyps, 60 colonic adenomas, 180 colon adenocarcinomas, and 40 lymph node metastases by immunohistochemistry, and observed that RACK1 expression was progressively elevated in the carcinogenic process of human colonic epithelium, and RACK1 expressional levels were positively correlated with the malignant degree and lymph node metastasis of colon cancers, and negatively correlated with the patient survival. With a combination of loss-of-function and gain-of-function approaches, we observed that RACK1 promoted colon cancer cell proliferation, inhibited colon cancer cell apoptosis, and enhanced the anchorage-independent and xenograft growth of colon cancer cells. Moreover, we found that RACK1-induced autophagy of colon cancer cells; RACK1-induced autophagy promoted colon cancer cell proliferation and inhibited colon cancer cell apoptosis. Our data suggest that RACK1 acts as an oncogene in colon cancer, and RACK1-induced autophagy promotes proliferation and survival of colon cancer, highlighting the therapeutic potential of autophagy inhibitor in the colon cancer with high RACK1 expression. 10.1038/s41419-018-1113-9
A novel PI3K axis selective molecule exhibits potent tumor inhibition in colorectal carcinogenesis. Hussain Aashiq,Qazi Asif Khurshid,Mupparapu Nagaraju,Kumar Ashok,Mintoo Mubashir Javeed,Mahajan Girish,Sharma Parduman Raj,Singh Shashank Kumar,Bharate Sandip B,Zargar Mohmmad Afzal,Ahmed Qazi Naveed,Mondhe Dilip Manikrao,Vishwakarma Ram A,Hamid Abid Molecular carcinogenesis Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is responsible for initiation, chemo-resistance, and poor prognosis of colorectal cancer (CRC). Therefore, PI3K pathway inhibition can provide a plausible way of attaining CRC treatment. We report PI3K target specific synthesis and selection of a potent molecule, that is, 2,3-dihydro-2-(naphthalene-1-yl) quinazolin-4(1H)-one (DHNQ) from quinazolinone series based on the structural activity relationship after evaluation in diverse cancers. This molecule inhibited the PI3K enzyme activity and transcriptional as well as translational expression levels in colorectal cancer (CRC) models. This was associated with subsequent decrease in phosphorylation of its downstream effector proteins, that is, p-Akt and p-mTORC1 and decreased ERK signaling. Furthermore, DHNQ decreased expression of cyclins that caused G arrest and decreased Bcl-2/Bax ratio after mitochondrial membrane potential loss, reactive oxygen species generation, and an increase in cytosolic Ca loads that is responsible for the decreased CRC cell proliferation and survival. These biochemical changes triggered apoptotic cell death with altered autophagic Beclin-1 and LC3β expression. It seemed that the PI3K-Akt signaling regulated apoptosis and autophagy through different mechanisms but mTORC1 mediated autophagy appeared not to be involved in the cell death induction by DHNQ. The molecule also showed significant anticancer efficacy in in vivo tumor models without any mortality indicating its non-toxic nature with possible clinical significance. Overall, the selective elucidation of DHNQ molecular mechanism will provide the possible strategies for the clinical development in CRC that may respond to this specific, potent and novel P13K inhibitor. © 2016 Wiley Periodicals, Inc. 10.1002/mc.22457
Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation. Zhang Wenliang,Shi Hongshun,Zhang Mingming,Liu Bin,Mao Shuai,Li Li,Tong Fang,Liu Guoliang,Yang Shulan,Wang Haihe The international journal of biochemistry & cell biology Accumulating evidences indicate that poly C binding protein (PCBP1) is downregulated in various carcinomas as a tumor suppressor, but the underlying mechanism in suppression of tumorigenesis still remains elusive. Here, we found that PCBP1 overexpression attenuates tumor cell growth upon serum-free starvation. Notably, the autophagic degradation inhibitor, chloroquine, could mimic this suppressive effect in tumor cell growth. Autophagy analyses demonstrated that PCBP1 overexpression blocked autophagic flux of tumor cells under starvation conditions, while PCBP1 downregulation in turn refueled this autophagic flux, protecting cells from death. Mechanistically, PCBP1 overexpression attenuated microtubule-associated protein Light chain 3 (LC3B) mRNA stability to repress LC3B expression, resulting in the autophagy inhibition. Consequently, PCBP1 overexpression strongly triggered the caspase 3 and 8-mediated apoptosis of tumor cells and downregulated anti-apoptotic Bcl-2 expression upon starvation, which could be further synergized by autophagic inhibitor, indicating that PCBP1 not only inhibits tumor cell autophagy, but also renders them to apoptosis. Taken together, our results uncovered a novel mechanism of PCBP1 in repressing autophagy-mediated cell survival and indicated that inhibition of tumor cell autophagy by PCBP1 upregulation or with autophagic inhibitors could be an effective therapeutical strategy to colon and ovary tumors with low PCBP1 expression. 10.1016/j.biocel.2016.02.009
High expression of Beclin-1 predicts favorable prognosis for patients with colorectal cancer. Yang Zuli,Ghoorun Roshan Ara,Fan Xinjuan,Wu Peihuang,Bai Yang,Li Jizheng,Chen Hao,Wang Lei,Wang Jianping Clinics and research in hepatology and gastroenterology PURPOSE:Beclin-1 is an autophagy gene. It promotes the formation of the autophagic vesicle as well as plays an essential role in guarding the cells against chromosomal instability. Overexpression of Beclin-1 has been reported to predict a favorable survival in various cancers. However, little is known about its prognostic significance in colorectal cancer. METHODS AND MATERIALS:A total of three hundred and sixty-three (363) colorectal tissues from colorectal cancer (CRC) patients were collected. Tissue micro-arrays and immunohistochemistry were used to investigate the expression and prognostic significance of Beclin-1 in CRC. The associations among Beclin-1 expression, clinicopathological parameters and prognosis were evaluated. RESULTS:Beclin-1 had a higher expression in CRC tissues than in normal tissues. A high expression of Beclin-1 was positively correlated with gender (P=0.027), histological grade (P=0.003), pM status (P=0.003) and clinical stage (P=0.024). Patients with a high Beclin-1 expression, when compared to those with a lower expression had both a better overall survival (OS, P=0.006) and disease-free survival (DFS, P=0.008). In the pT3 subgroup, Beclin-1 was also found to be a good prognostic indicator (P<0.05). Multivariate analysis showed a high expression of Beclin-1 was indeed a positive independent prognostic factor of OS and DFS for CRC patients (P<0.05). CONCLUSION:Our results demonstrated that a high expression of Beclin-1 correlated with a better overall survival and disease-free survival, thus serving as a favorable independent prognostic marker in CRC. 10.1016/j.clinre.2014.06.014
Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor. FASEB journal : official publication of the Federation of American Societies for Experimental Biology Apoptosis and autophagy are dynamic processes that determine the fate of cells. Vitamin D receptor (VDR) deficiency in the intestine leads to abnormal Paneth cells and impaired autophagy function. Here, we will elucidate the mechanisms of the intestinal epithelial VDR regulation of autophagy and apoptosis. We used VDR and VDR mice and organoids generated from small intestine and colon tissues. We found that VDR deficiency induced more apoptotic cells and significantly increased cell death in the small intestine and colon of VDR mice. The proapoptotic protein B-cell lymphoma 2 (BCL-2) associated X protein (Bax) was enhanced, whereas autophagy related 16 like 1 (ATG16L1) and Beclin-1 were decreased in the intestines of VDR mice. Apoptosis induced by Bax reduced autophagy by decreasing Beclin-1. Physical interactions between Beclin-1 and Bcl-2 were increased in the VDR-deficient epithelia from mice. The growth of VDR organoids was significantly slower with fewer Paneth cells than that of VDR organoids. The expression levels of Beclin-1 and lysozyme were decreased in VDR organoids. Bacterial endotoxin levels were high in the serum from VDR mice and made mice susceptible to colitis. In the organoids and colitis IL-10 mice, vitamin D treatment increased VDR and ATG16L1 protein expression levels, which activated autophagic responses. In summary, intestinal epithelial VDR regulates autophagy and apoptosis through ATG16L1 and Beclin-1. Our studies provide fundamental insights into the tissue-specific function of VDR in modulating the balance between autophagy and apoptosis.-Lu, R., Zhang, Y.-G., Xia, Y., Sun, J. Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor. 10.1096/fj.201900727R
ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Peng Yuan,Miao Hongming,Wu Shuang,Yang Weiwen,Zhang Yue,Xie Ganfeng,Xie Xiong,Li Jianjun,Shi Chunmeng,Ye Lilin,Sun Wei,Wang Liting,Liang Houjie,Ou Juanjuan Autophagy Autophagy critically contributes to metabolic reprogramming and chromosomal stability. It has been reported that monoallelic loss of the essential autophagy gene BECN1 (encoding BECN1/Beclin 1) promotes cancer development and progression. However, the mechanism by which BECN1 is inactivated in malignancy remains largely elusive. We have previously reported a tumor suppressor role of ABHD5 (abhydrolase domain containing 5), a co-activator of PNPLA2 (patatin like phospholipase domain containing 2) in colorectal carcinoma (CRC). Here we report a noncanonical role of ABHD5 in regulating autophagy and CRC tumorigenesis. ABHD5 directly competes with CASP3 for binding to the cleavage sites of BECN1, and consequently prevents BECN1 from being cleaved by CASP3. ABHD5 deficiency provides CASP3 an advantage to cleave and inactivate BECN1, thus impairing BECN1-induced autophagic flux and augmenting genomic instability, which subsequently promotes tumorigenesis. Notably, clinical data also confirm that ABHD5 proficiency is significantly correlated with the expression levels of BECN1, LC3-II and CASP3 in human CRC tissues. Our findings suggest that ABHD5 possesses a PNPLA2-independent function in regulating autophagy and tumorigenesis, further establishing the tumor suppressor role of ABHD5, and offering an opportunity to develop new approaches aimed at preventing CRC carcinogenesis. 10.1080/15548627.2016.1217380
Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Liang Chengyu,Feng Pinghui,Ku Bonsu,Dotan Iris,Canaani Dan,Oh Byung-Ha,Jung Jae U Nature cell biology Autophagy, the degradation of cytoplasmic components, is an evolutionarily conserved homeostatic process involved in environmental adaptation, lifespan determination and tumour development. The tumor suppressor Beclin1 is part of the PI(3) kinase class III (PI(3)KC3) lipid-kinase complex that induces autophagy. The autophagic activity of the Beclin1-PI(3)KC3 complex, however, is suppressed by Bcl-2. Here, we report the identification of a novel coiled-coil UV irradiation resistance-associated gene (UVRAG) as a positive regulator of the Beclin1-PI(3)KC3 complex. UVRAG, a tumour suppressor candidate that is monoallelically mutated at high frequency in human colon cancers, associates with the Beclin1-Bcl-2-PI(3)KC3 multiprotein complex, where UVRAG and Beclin1 interdependently induce autophagy. UVRAG-mediated activation of the Beclin1-PI(3)KC3 complex promotes autophagy and also suppresses the proliferation and tumorigenicity of human colon cancer cells. These results identify UVRAG as an essential component of the Beclin1-PI(3)KC3 lipid kinase complex that is an important signalling checkpoint for autophagy and tumour-cell growth. 10.1038/ncb1426
Expression analysis of LC3B and p62 indicates intact activated autophagy is associated with an unfavorable prognosis in colon cancer. Niklaus Monique,Adams Olivia,Berezowska Sabina,Zlobec Inti,Graber Franziska,Slotta-Huspenina Julia,Nitsche Ulrich,Rosenberg Robert,Tschan Mario P,Langer Rupert Oncotarget Autophagy is a lysosomal degradation and recycling process implicated in cancer progression and therapy resistance. We assessed the impact of basal autophagy in colon cancer (CC) and . Functional autophagy was demonstrated in CC cell lines (LoVo; HT-29) showing a dose-dependent increase of the autophagy markers LC3B, p62 and autophagic vesciles upon increasing concentrations of the autophagy inhibitor chloroquine, which was demonstrated by immunoblotting, immunofluorescence and electron microscopy. Next, tissue microarrays with 292 primary resected CC, with cores from different tumor regions, and normal mucosa were analyzed by immunohistochemistry for LC3B and p62. CC tissue showed LC3B dot-like, p62 dot-like, cytoplasmic and nuclear staining in various levels without significant intratumoral heterogeneity. Tumoral LC3B and p62 expression was significantly higher than in normal tissue (p<0.001). No associations between staining patterns and pathological features (e.g. TNM categories; grading) were observed. Both low LC3B dot-like and low p62 dot-like-cytoplasmic staining were associated with worse overall survival (p=0.005 and p=0.002). The best prognostic discrimination, however, was seen for a combination of LC3B dot-like/p62 dot-like-cytoplasmic staining: high expression of both markers, indicative of impaired activated autophagy, was associated with the best overall survival. In contrast, high LC3B dot-like/low p62 dot-like-cytoplasmic expression, indicative of intact activated autophagy, was associated with the worst outcome (p<0.001 in univariate and HR=0.751; CI=0.607-0.928; p=0.008 in multivariate analysis). These specific expression patterns of LC3B and p62 pointing to different states of autophagy associated with diverging clinical outcomes highlighte the potential significance of basal autophagy in CC biology. 10.18632/oncotarget.17554
Inhibition of cyclooxygenase-1 lowers proliferation and induces macroautophagy in colon cancer cells. Wu William Ka Kei,Sung Joseph Jao Yiu,Wu Ya Chun,Li Hai To,Yu Le,Li Zhi Jie,Cho Chi Hin Biochemical and biophysical research communications Evolving evidence supports that cyclooxygenase-1 (COX-1) takes part in colon carcinogenesis. The effects of COX-1 inhibition on colon cancer cells, however, remains obscured. In this study, we demonstrate that COX-1 inhibitor sc-560 inhibited colon cancer cell proliferation with concomitant G(0)/G(1)-phase cell cycle arrest. The anti-proliferative effect was associated with down-regulation of c-Fos, cyclin E(2) and E(2)F-1 and up-regulation of p21(Waf1/Cip1) and p27(Kip1). In addition, sc-560 induced macroautophagy, an emerging mechanism of tumor suppression, as evidenced by the formation of LC3(+) autophagic vacuoles, enhanced LC3 processing, and the accumulation of acidic vesicular organelles and autolysosomes. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3(+) autophagic vacuoles and the processing of LC3 induced by sc-560. To conclude, this study reveals the unreported relationship between COX-1 and proliferation/macroautophagy of colon cancer cells. 10.1016/j.bbrc.2009.02.140
Biphasic ROS production, p53 and BIK dictate the mode of cell death in response to DNA damage in colon cancer cells. Kutuk Ozgur,Aytan Nurgul,Karakas Bahriye,Kurt Asli Giray,Acikbas Ufuk,Temel Sehime Gulsun,Basaga Huveyda PloS one Necrosis, apoptosis and autophagic cell death are the main cell death pathways in multicellular organisms, all with distinct and overlapping cellular and biochemical features. DNA damage may trigger different types of cell death in cancer cells but the molecular events governing the mode of cell death remain elusive. Here we showed that increased BH3-only protein BIK levels promoted cisplatin- and UV-induced mitochondrial apoptosis and biphasic ROS production in HCT-116 wild-type cells. Nonetheless, early single peak of ROS formation along with lysosomal membrane permeabilization and cathepsin activation regulated cisplatin- and UV-induced necrosis in p53-null HCT-116 cells. Of note, necrotic cell death in p53-null HCT-116 cells did not depend on BIK, mitochondrial outer membrane permeabilization or caspase activation. These data demonstrate how cancer cells with different p53 background respond to DNA-damaging agents by integrating distinct cell signaling pathways dictating the mode of cell death. 10.1371/journal.pone.0182809
PSF knockdown enhances apoptosis via downregulation of LC3B in human colon cancer cells. Tsukahara Tamotsu,Matsuda Yoshikazu,Haniu Hisao BioMed research international Our previous study demonstrated that PTB-associated splicing factor (PSF) is an important regulator of cell death and plays critical roles in the survival and growth of colon cancer cells. However, the molecular mechanism that activates these downstream signaling events remains unknown. To address this issue, we investigated the effects of PSF knockdown in two different colon cancer cell lines, DLD-1 and HT-29. We found that knockdown of PSF markedly decreased the autophagic molecule LC3B in DLD-1 cells but not in HT-29 cells. Furthermore, DLD-1 cells were more susceptible to PSF knockdown-induced cell growth inhibition and apoptosis than HT-29 cells. This susceptibility is probably a result of LC3B inhibition, given the known relationship between autophagy and apoptosis. C3B is associated with a number of physiological processes, including cell growth and apoptotic cell death. Our results suggest that autophagy is inhibited by PSF knockdown and that apoptosis and cell growth inhibition may act together to mediate the PSF-LC3B signaling pathway. Furthermore, we found that the peroxisome proliferator-activated receptor gamma (PPARγ)-PSF complex induced LC3B downregulation in DLD-1 cells. The results of this study identify a new physiological role for the PSF-LC3B axis as a potential endogenous modulator of colon cancer treatment. 10.1155/2013/204973