logo logo
The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Uchimido Ryo,Schmidt Eric P,Shapiro Nathan I Critical care (London, England) The glycocalyx is a gel-like layer covering the luminal surface of vascular endothelial cells. It is comprised of membrane-attached proteoglycans, glycosaminoglycan chains, glycoproteins, and adherent plasma proteins. The glycocalyx maintains homeostasis of the vasculature, including controlling vascular permeability and microvascular tone, preventing microvascular thrombosis, and regulating leukocyte adhesion.During sepsis, the glycocalyx is degraded via inflammatory mechanisms such as metalloproteinases, heparanase, and hyaluronidase. These sheddases are activated by reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1beta. Inflammation-mediated glycocalyx degradation leads to vascular hyper-permeability, unregulated vasodilation, microvessel thrombosis, and augmented leukocyte adhesion. Clinical studies have demonstrated the correlation between blood levels of glycocalyx components with organ dysfunction, severity, and mortality in sepsis.Fluid resuscitation therapy is an essential part of sepsis treatment, but overaggressive fluid therapy practices (leading to hypervolemia) may augment glycocalyx degradation. Conversely, fresh frozen plasma and albumin administration may attenuate glycocalyx degradation. The beneficial and harmful effects of fluid and plasma infusion on glycocalyx integrity in sepsis are not well understood; future studies are warranted.In this review, we first analyze the underlying mechanisms of glycocalyx degradation in sepsis. Second, we demonstrate how the blood and urine levels of glycocalyx components are associated with patient outcomes. Third, we show beneficial and harmful effects of fluid therapy on the glycocalyx status during sepsis. Finally, we address the concept of glycocalyx degradation as a therapeutic target. 10.1186/s13054-018-2292-6
Plasma N-glycome composition associates with chronic low back pain. Trbojević-Akmačić Irena,Vučković Frano,Vilaj Marija,Skelin Andrea,Karssen Lennart C,Krištić Jasminka,Jurić Julija,Momčilović Ana,Šimunović Jelena,Mangino Massimo,De Gregori Manuela,Marchesini Maurizio,Dagostino Concetta,Štambuk Jerko,Novokmet Mislav,Rauck Richard,Aulchenko Yurii S,Primorac Dragan,Kapural Leonardo,Buyse Klaas,Mesotten Dieter,Williams Frances M K,van Zundert Jan,Allegri Massimo,Lauc Gordan Biochimica et biophysica acta. General subjects BACKGROUND:Low back pain (LBP) is the symptom of a group of syndromes with heterogeneous underlying mechanisms and molecular pathologies, making treatment selection and patient prognosis very challenging. Moreover, symptoms and prognosis of LBP are influenced by age, gender, occupation, habits, and psychological factors. LBP may be characterized by an underlying inflammatory process. Previous studies indicated a connection between inflammatory response and total plasma N-glycosylation. We wanted to identify potential changes in total plasma N-glycosylation pattern connected with chronic low back pain (CLBP), which could give an insight into the pathogenic mechanisms of the disease. METHODS:Plasma samples of 1128 CLBP patients and 760 healthy controls were collected in clinical centers in Italy, Belgium and Croatia and used for N-glycosylation profiling by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) after N-glycans release, fluorescent labeling and clean-up. Observed N-glycosylation profiles have been compared with a cohort of 126 patients with acute inflammation that underwent abdominal surgery. RESULTS:We have found a statistically significant increase in the relative amount of high-branched (tri-antennary and tetra-antennary) N-glycan structures on CLBP patients' plasma glycoproteins compared to healthy controls. Furthermore, relative amounts of disialylated and trisialylated glycan structures were increased, while high-mannose and glycans containing bisecting N-acetylglucosamine decreased in CLBP. CONCLUSIONS:Observed changes in CLBP on the plasma N-glycome level are consistent with N-glycosylation changes usually seen in chronic inflammation. GENERAL SIGNIFICANCE:To our knowledge, this is a first large clinical study on CLBP patients and plasma N-glycome providing a new glycomics perspective on potential disease pathology. 10.1016/j.bbagen.2018.07.003
Glycocalyx Curving the Membrane: Forces Emerging from the Cell Exterior. Annual review of cell and developmental biology Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease. 10.1146/annurev-cellbio-120219-054401
Surface glycosylation profiles of urine extracellular vesicles. Gerlach Jared Q,Krüger Anja,Gallogly Susan,Hanley Shirley A,Hogan Marie C,Ward Christopher J,Joshi Lokesh,Griffin Matthew D PloS one Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications. 10.1371/journal.pone.0074801
Sugar Concentration and Arrangement on the Surface of Glycopolymer Micelles Affect the Interaction with Cancer Cells. Lu Mingxia,Khine Yee Yee,Chen Fan,Cao Cheng,Garvey Christopher J,Lu Hongxu,Stenzel Martina H Biomacromolecules Glycopolymer-coated nanoparticles have attracted significant interest over the past few years, because of their selective interaction with carbohydrate receptors found on the surface of cells. While the type of carbohydrate determines the strength of the ligand-receptor interaction, the presentation of the sugar can be highly influential as the carbohydrate needs to be accessible in order to display good binding. To shine more light on the relationship between nanoparticle structure and cell uptake, we have designed several micelles based on fructose containing block copolymers, which are selective to GLUT5 receptors found on breast cancer cell lines. The polymers were based on poly-d,l-lactide (PLA), poly(2-hydroxyethyl) acrylate (PHEA), and poly(1- O-acryloyl-β-d-fructopyranose) (P[1- O-AFru]). A set of six micelles was synthesized based on four fructose containing micelles (PLA- b-P[1- O-AFru], PLA- b-P[1- O-AFru], PLA- b-P[1- O-AFru-c-HEA], PLA- b-PHEA- b-P[1- O-AFru]) and two neutral controls (PLA- b-PHEA and PLA- b-PHEA). SAXS analysis revealed that longer hydrophilic polymers led to lower aggregation numbers and larger hydrophilic shells, suggesting more glycopolymer mobility. Cellular uptake studies via flow cytometry and confocal laser scanning microscopy (CLSM) confirmed that the micelles based on PLA- b-P[1- O-AFru] show, by far, the highest uptake by MCF-7 and MDA-MB-231 breast cancer cell lines while the uptake of all micelles by RAW264.7 cell is negligible. The same micelle displayed was far superior in penetrating MCF-7 cancer spheroids (three-dimensional (3D) model). Taking the physicochemical characterization obtained by SAXS and the in vitro results together, it could be concluded that the glycopolymer chains on the surface of micelle must display high mobility. Moreover, a high density of fructose was found to be necessary to achieve good biological activity as lowering the epitope density led immediately to lower cellular uptake. This work showed that it is crucial to understand the micelle structure in order to maximize the biological activity of glycopolymer micelles. 10.1021/acs.biomac.8b01406
Surface Sugars Get Cells in Shape. Godula Kamil Cell Cell membranes can adopt a variety of shapes and curvatures, yet our understanding of the factors involved remains limited. In this issue of Cell, Shurer et al. (2019) demonstrate that the glycocalyx can regulate cell shape from the outside in. 10.1016/j.cell.2019.05.053
Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Williams Charles,Pazos Raquel,Royo Félix,González Esperanza,Roura-Ferrer Meritxell,Martinez Aitor,Gamiz Jorge,Reichardt Niels-Christian,Falcón-Pérez Juan M Scientific reports Extracellular vesicles (EVs) are important mediators of cell-cell communication in a broad variety of physiological contexts. However, there is ambiguity around the fundamental mechanisms by which these effects are transduced, particularly in relation to their uptake by recipient cells. Multiple modes of cellular entry have been suggested and we have further explored the role of glycans as potential determinants of uptake, using EVs from the murine hepatic cell lines AML12 and MLP29 as independent yet comparable models. Lectin microarray technology was employed to define the surface glycosylation patterns of EVs. Glycosidases PNGase F and neuraminidase which cleave N-glycans and terminal sialic acids, respectively, were used to analyze the relevance of these modifications to EV surface glycans on the uptake of fluorescently labelled EVs by a panel of cells representing a variety of tissues. Flow cytometry revealed an increase in affinity for EVs modified by both glycosidase treatments. High-content screening exhibited a broader range of responses with different cell types preferring different vesicle glycosylation states. We also found differences in vesicle charge after treatment with glycosidases. We conclude that glycans are key players in the tuning of EV uptake, through charge-based effects, direct glycan recognition or both, supporting glycoengineering as a toolkit for therapy development. 10.1038/s41598-019-48499-1
Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. Freitas Daniela,Balmaña Meritxell,Poças Juliana,Campos Diana,Osório Hugo,Konstantinidi Andriana,Vakhrushev Sergey Y,Magalhães Ana,Reis Celso A Journal of extracellular vesicles Extracellular vesicles (EVs) are a heterogeneous group of small secreted particles involved in intercellular communication and mediating a broad spectrum of biological functions. EVs cargo is composed of a large repertoire of molecules, including glycoconjugates. Herein, we report the first study on the impact of the isolation strategy on the EV populations' glycosylation profile. The use of different state-of-the-art protocols, namely differential ultracentrifugation (UC), total exosome isolation (TEI), OptiPrep density gradient (ODG) and size exclusion chromatography (SEC) resulted in EV populations displaying different sets of glycoconjugates. The EV populations obtained by UC, ODG and SEC methods displayed similar protein and glycan profiles, whereas TEI methodology isolated the most distinct EV population. In addition, ODG and SEC isolation protocols provided an enhanced EV glycoproteins detection. Remarkably, proteins displaying the tumour-associated glycan sialyl-Tn (STn) were identified as packaged cargo into EVs independently of the isolation methodology. STn carrying EV samples isolated by UC, ODG and SEC presented a considerable set of cancer-related proteins that were not detected in EVs isolated by TEI. Our work demonstrates the impact of using different isolation methodologies in the populations of EVs that are obtained, with consequences in the glycosylation profile of the isolated population. Furthermore, our results highlight the importance of selecting adequate EV isolation protocols and cell culture conditions to determine the structural and functional complexity of the EV glycoconjugates. 10.1080/20013078.2019.1621131
Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Royo Felix,Cossío Unai,Ruiz de Angulo Ane,Llop Jordi,Falcon-Perez Juan M Nanoscale Extracellular vesicles (EVs) are considered sophisticated vehicles for cell-to-cell communication, thanks to the possibility of handling a variable cargo in a shell with multiple types of decoders. Surface glycosylation of EVs is a method that could be used to control their interaction with different cells and, consequently, the biodistribution of the vesicles in the body. Herein, we produced EVs derived from mouse liver proliferative cells, and we treated them with neuraminidase, an enzyme that digests the terminal sialic acid residues from glycoproteins. Afterwards, we labeled the EVs directly with [124I]Na and injected them in mice intravenously or into the hock. The amount of radioactivity in major organs was measured at different time points after administration both in vivo using positron emission tomography and ex vivo (after animal sacrifice) using dissection and gamma counting. The results showed that intravenous injection leads to the rapid accumulation of EVs in the liver. Moreover, after some hours the distribution led to the presence of EVs in different organs including the brain. Glycosidase treatment induced an accumulation in the lungs, compared with the intact EVs. Furthermore, when the EVs were injected through the hock, the neuraminidase-treated vesicles distributed better at the axillary lymph nodes than the untreated EVs. This result shows that modification of the glycosylated complexes on the EV surface can affect the distribution of these vesicles, and specifically removing the sialic acid residues allows more EVs to reach and accumulate at the lungs. 10.1039/c8nr03900c
Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. Williams Charles,Royo Felix,Aizpurua-Olaizola Oier,Pazos Raquel,Boons Geert-Jan,Reichardt Niels-Christian,Falcon-Perez Juan M Journal of extracellular vesicles It is now acknowledged that extracellular vesicles (EVs) are important effectors in a vast number of biological processes through intercellular transfer of biomolecules. Increasing research efforts in the EV field have yielded an appreciation for the potential role of glycans in EV function. Indeed, recent reports show that the presence of glycoconjugates is involved in EV biogenesis, in cellular recognition and in the efficient uptake of EVs by recipient cells. It is clear that a full understanding of EV biology will require researchers to focus also on EV glycosylation through glycomics approaches. This review outlines the major glycomics techniques that have been applied to EVs in the context of the recent findings. Beyond understanding the mechanisms by which EVs mediate their physiological functions, glycosylation also provides opportunities by which to engineer EVs for therapeutic and diagnostic purposes. Studies characterising the glycan composition of EVs have highlighted glycome changes in various disease states, thus indicating potential for EV glycans as diagnostic markers. Meanwhile, glycans have been targeted as molecular handles for affinity-based isolation in both research and clinical contexts. An overview of current strategies to exploit EV glycosylation and a discussion of the implications of recent findings for the burgeoning EV industry follows the below review of glycomics and its application to EV biology. 10.1080/20013078.2018.1442985
Antiadhesive nanosome elicits role of glycocalyx of tumor cell-derived exosomes in the organotropic cancer metastasis. Koide Ryosuke,Hirane Nozomi,Kambe Daiki,Yokoi Yasuhiro,Otaki Michiru,Nishimura Shin-Ichiro Biomaterials Despite emerging importance of tumor cells-derived exosomes in cancer metastasis, the heterogeneity of exosome populations has largely hampered systemic characterization of their molecular composition, biogenesis, and functions. This study communicates a novel method for predicting and targeting pre-metastatic sites based on an exosome model "fluorescent cancer glyconanosomes" displaying N-glycans of cultured tumor cells. Glycoblotting by antiadhesive quantum dots provides a nice tool to shed light on the pivotal functions of the glycocalyx reconstructed from four cancer cell types without bias due to other compositions of exosomes. In vivo imaging revealed that circulation, clearance, and organotropic biodistribution of cancer glyconanosomes in mice depend strongly on cancer cell-type-specific N-glycosylation patterns, the compositions of key glycotypes, particularly dominant abundances of high mannose-type N-glycans and the position-specific sialylation. Notably, organ biodistribution of cancer glyconanosomes is reproducible artificially by mimicking cancer cell-type-specific N-glycosylation patterns, demonstrating that nanosomal glycoblotting method serves as promising tools for predicting and targeting pre-metastatic sites determined by the glycocalyx of extracellular vesicles disseminated from the primary cancer site. 10.1016/j.biomaterials.2021.121314
Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Martins Álvaro M,Ramos Cátia C,Freitas Daniela,Reis Celso A Cells Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans. Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis cancer biomarkers. Interestingly, several of the known tumor-associated glycans have already been identified in cancer EVs, highlighting EV glycosylation as a potential source of circulating cancer biomarkers. These particles are crucial vehicles of cell-cell communication, being able to transfer molecular information and to modulate the recipient cell behavior. The presence of particular glycoconjugates has been described to be important for EV protein sorting, uptake and organ-tropism. Furthermore, specific EV glycans or glycoproteins have been described to be able to distinguish tumor EVs from benign EVs. In this review, the application of EV glycosylation in the development of novel EV detection and capture methodologies is discussed. In addition, we highlight the potential of EV glycosylation in the clinical setting for both cancer biomarker discovery and EV therapeutic delivery strategies. 10.3390/cells10010109
Extracellular Vesicles and Glycosylation. Advances in experimental medicine and biology Extracellular vesicles (EVs), a generic term for any vesicles or particles that are released from cells, play an important role in modulating numerous biological and pathological events, including development, differentiation, aging, thrombus formation, immune responses, neurodegenerative diseases, and tumor progression. During the biogenesis of EVs, they encapsulate biologically active macromolecules (i.e., nucleotides and proteins) and transmit signals for delivering them to neighboring or cells that are located some distance away. In contrast, there are receptor molecules on the surface of EVs that function to mediate EV-to-cell and EV-to-matrix interactions. A growing body of evidence indicates that the EV surface is heavily modified with glycans, the function of which is to regulate the biogenesis and extracellular behaviors of EVs. In this chapter, we introduce the current status of our knowledge concerning EV glycosylation and discuss how it influences EV biology, highlighting the potential roles of EV glycans in clinical applications. 10.1007/978-3-030-70115-4_6
MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Li Jun,Xu Jiawen,Li Luhan,Ianni Alessandro,Kumari Poonam,Liu Shuo,Sun Peiqing,Braun Thomas,Tan Xiaoyue,Xiang Rong,Yue Shijing Theranostics : Tetraspanins constitute a family of transmembrane spanning proteins that function mainly by organizing the plasma membrane into micro-domains. CD82, a member of tetraspanins, is a potent inhibitor of cancer metastasis in numerous malignancies. CD82 is a highly glycosylated protein, however, it is still unknown whether and how this post-translational modification affects CD82 function and cancer metastasis. : The glycosylation of CD82 profiles are checked in the paired human ovarian primary and metastatic cancer tissues. The functional studies on the various glycosylation sites of CD82 are performed in vitro and in vivo. : We demonstrate that CD82 glycosylation at Asn157 is necessary for CD82-mediated inhibition of ovarian cancer cells migration and metastasis and . Mechanistically, we discover that CD82 glycosylation is pivotal to disrupt integrin α5β1-mediated cellular adhesion to the abundant extracellular matrix protein fibronectin. Thereby the glycosylated CD82 inhibits the integrin signaling pathway responsible for the induction of the cytoskeleton rearrangements required for cellular migration. Furthermore, we reveal that the glycosyltransferase MGAT3 is responsible for CD82 glycosylation in ovarian cancer cells. Metastatic ovarian cancers express reduced levels of MGAT3 which in turn may result in impaired CD82 glycosylation. : Our work implicates a pathway for ovarian cancers metastasis regulation via MGAT3 mediated glycosylation of tetraspanin CD82 at asparagine 157. 10.7150/thno.43865
Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Macedo-da-Silva Janaina,Santiago Verônica F,Rosa-Fernandes Livia,Marinho Claudio R F,Palmisano Giuseppe Molecular immunology Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field. 10.1016/j.molimm.2021.04.017
Circulating Heparan Sulfate Proteoglycans as Biomarkers in Health and Disease. Lepedda Antonio Junior,Nieddu Gabriele,Piperigkou Zoi,Kyriakopoulou Konstantina,Karamanos Nikolaos,Formato Marilena Seminars in thrombosis and hemostasis Cell-surface heparan sulfate proteoglycans (HSPGs) play key roles in regulating cell behavior, cell signaling, and cell matrix interactions in both physiological and pathological conditions. Their soluble forms from glycocalyx shedding are not merely waste products, but, rather, bioactive molecules, detectable in serum, which may be useful as diagnostic and prognostic markers. In addition, as in the case of glypican-3 in hepatocellular carcinoma, they may be specifically expressed by pathological tissue, representing promising targets for immunotherapy. The primary goal of this comprehensive review is to critically survey the main findings of the clinical data from the last 20 years and provide readers with an overall picture of the diagnostic and prognostic value of circulating HSPGs. Moreover, issues related to the involvement of HSPGs in various pathologies, including cardiovascular disease, thrombosis, diabetes and obesity, kidney disease, cancer, trauma, sepsis, but also multiple sclerosis, preeclampsia, pathologies requiring surgery, pulmonary disease, and others will be discussed. 10.1055/s-0041-1725063
The heparan sulfate proteoglycan syndecan-1 regulates colon cancer stem cell function via a focal adhesion kinase-Wnt signaling axis. Kumar Katakam Sampath,Tria Valeria,Sim Wey-Cheng,Yip George W,Molgora Stefano,Karnavas Theodoros,Elghonaimy Eslam A,Pelucchi Paride,Piscitelli Eleonora,Ibrahim Sherif Abdelaziz,Zucchi Ileana,Reinbold Rolland,Greve Burkhard,Götte Martin The FEBS journal In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT-29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-1-depleted HT-29 xenograft growth was increased compared to controls. Decreased Sdc-1 expression was associated with an increased activation of β1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc-1-depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence. DATABASES: The GEO accession number of the Affymetrix transcriptomic screening is GSE58751. 10.1111/febs.15356
Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Elgundi Zehra,Papanicolaou Michael,Major Gretel,Cox Thomas R,Melrose James,Whitelock John M,Farrugia Brooke L Frontiers in oncology Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes. 10.3389/fonc.2019.01482
Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets. 10.3390/biom11020136
Heparan Sulfate-Instructed Self-Assembly Selectively Inhibits Cancer Cell Migration. Mang Dingze,Roy Sona Rani,Zhang Qizheng,Hu Xunwu,Zhang Ye ACS applied materials & interfaces Heparan sulfate (HS) has important emerging roles in oncogenesis, which represents potential therapeutic strategies for human cancers. However, due to the complexity of the HS signaling network, HS-targeted synthetic cancer therapeutics has never been successfully devised. To conquer the challenge, we developed HS-instructed self-assembling peptides by decorating the "Cardin-Weintraub" sequence with aromatic amino acids. The HS-binding interactions induce localized accumulation of synthetic peptides triggering molecular self-assembly in the vicinity of highly expressed Heparan sulfate proteoglycans (HSPGs) on the cancer cell membrane. The nanostructures hinder the binding of HSPG with metastasis promoting protein-heparin-binding EGF-like growth factor (HBEGF) inhibiting the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Our study proved that HS-instructed self-assembly is a promising synthetic therapeutic strategy for targeted cancer migration inhibition. 10.1021/acsami.1c00934
Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Marques Catarina,Reis Celso A,Vivès Romain R,Magalhães Ana Frontiers in oncology Heparan Sulfate Proteoglycans (HSPGs) are important cell surface and Extracellular Matrix (ECM) maestros involved in the orchestration of multiple cellular events in physiology and pathology. These glycoconjugates bind to various bioactive proteins their Heparan Sulfate (HS) chains, but also through the protein backbone, and function as scaffolds for protein-protein interactions, modulating extracellular ligand gradients, cell signalling networks and cell-cell/cell-ECM interactions. The structural features of HS chains, including length and sulfation patterns, are crucial for the biological roles displayed by HSPGs, as these features determine HS chains binding affinities and selectivity. The large HS structural diversity results from a tightly controlled biosynthetic pathway that is differently regulated in different organs, stages of development and pathologies, including cancer. This review addresses the regulatory mechanisms underlying HS biosynthesis, with a particular focus on the catalytic activity of the enzymes responsible for HS glycan sequences and sulfation motifs, namely D-Glucuronyl C5-Epimerase, N- and O-Sulfotransferases. Moreover, we provide insights on the impact of different HS structural epitopes over HSPG-protein interactions and cell signalling, as well as on the effects of deregulated expression of HS modifying enzymes in the development and progression of cancer. Finally, we discuss the clinical potential of HS biosynthetic enzymes as novel targets for therapy, and highlight the importance of developing new HS-based tools for better patients' stratification and cancer treatment. 10.3389/fonc.2021.778752
Heparan Sulfate Proteoglycans Can Promote Opposite Effects on Adhesion and Directional Migration of Different Cancer Cells. Depau Lorenzo,Brunetti Jlenia,Falciani Chiara,Mandarini Elisabetta,Riolo Giulia,Zanchi Marta,Karousou Evgenia,Passi Alberto,Pini Alessandro,Bracci Luisa Journal of medicinal chemistry Heparan sulfate proteoglycans take part in crucial events of cancer progression, such as epithelial-mesenchymal transition, cell migration, and cell invasion. Through sulfated groups on their glycosaminoglycan chains, heparan sulfate proteoglycans interact with growth factors, morphogens, chemokines, and extracellular matrix (ECM) proteins. The amount and position of sulfated groups are highly variable, thus allowing differentiated ligand binding and activity of heparan sulfate proteoglycans. This variability and the lack of specific ligands have delayed comprehension of the molecular basis of heparan sulfate proteoglycan functions. Exploiting a tumor-targeting peptide tool that specifically recognizes sulfated glycosaminoglycans, we analyzed the role of membrane heparan sulfate proteoglycans in the adhesion and migration of cancer cell lines. Starting from the observation that the sulfated glycosaminoglycan-specific peptide exerts a different effect on adhesion, migration, and invasiveness of different cancer cell lines, we identified and characterized three cell migration phenotypes, where different syndecans are associated with alternative signaling for directional cell migration. 10.1021/acs.jmedchem.0c01848
Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Lim Hooi Ching,Multhaupt Hinke A B,Couchman John R Molecular cancer BACKGROUND:Cell surface proteoglycans interact with numerous regulators of cell behavior through their glycosaminoglycan chains. The syndecan family of transmembrane proteoglycans are virtually ubiquitous cell surface receptors that are implicated in the progression of some tumors, including breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. METHODS:The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two-tailed paired t-test and one-way ANOVA with Tukey's post-hoc test were used in the analysis of data. RESULTS:MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced invasion and matrix degradation. The molecular basis for this effect was revealed to have two components. First, thrombin inhibition contributed to enhanced cell adhesion and reduced invasion. Second, a specific loss of cell surface syndecan-2 was noted. The ensuing junction formation was dependent on syndecan-4, whose role in promoting actin cytoskeletal organization is known. Syndecan-2 interacts with, and may regulate, caveolin-2. Depletion of either molecule had the same adhesion-promoting influence, along with reduced invasion, confirming a role for this complex in maintaining the invasive phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. CONCLUSION:Cell surface proteoglycans, notably syndecan-2, may be important regulators of breast carcinoma progression through regulation of cytoskeleton, cell adhesion and invasion. 10.1186/s12943-014-0279-8
Structural alteration of cell surface heparan sulfate through the stimulation of the signaling pathway for heparan sulfate 6-O-sulfotransferase-1 in mouse fibroblast cells. Nishida Mitsutaka,Kozakai Takeru,Nagami Keitaro,Kanamaru Yoshihiro,Yabe Tomio Bioscience, biotechnology, and biochemistry Heparan sulfate (HS) is a randomly sulfated polysaccharide that is present on the cell surface and in the extracellular matrix. The sulfated structures of HS were synthesized by multiple HS sulfotransferases, thereby regulating various activities such as growth factor signaling, cell differentiation, and tumor metastasis. Therefore, if the sulfated structures of HS could be artificially controlled, those manipulations would help to understand the various functions depending on HS. However, little knowledge is currently available to realize the mechanisms controlling the expression of such enzymes. In this study, we found that the ratio of 6-O-sulfated disaccharides increased at 3 h after adrenaline stimulation in mouse fibroblast cells. Furthermore, adrenaline-induced up-regulation of HS 6-O-sulfotransferase-1 (6-OST-1) was controlled by Src-ERK1/2 signaling pathway. Finally, inhibiting the signaling pathways for 6-OST-1 intentionally suppressed the adrenaline-induced structural alteration of HS. These observations provide fundamental insights into the understanding of structural alterations in HS by extracellular cues. 10.1080/09168451.2014.905178
Cell surface heparan sulfate proteoglycans are involved in the extracellular Hsp90-stimulated migration and invasion of cancer cells. Cell stress & chaperones The extracellular heat shock protein 90 (Hsp90) is known to participate in cell migration and invasion. Recently, we have shown that cell surface heparan sulfate proteoglycans (HSPGs) are involved in the binding and anchoring of extracellular Hsp90 to the plasma membrane, but the biological relevance of this finding was unclear. Here, we demonstrated that the digestion of heparan sulfate (HS) moieties of HSPGs with a heparinase I/III blend and the metabolic inhibition of the sulfation of HS chains by sodium chlorate considerably impair the migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells stimulated by extracellular native Hsp90. Heparin, a polysaccharide closely related to HS, also reduced the Hsp90-stimulated migration and invasion of cells. Phorbol 12-myristate 13-acetate, an intracellular inducer of cell motility bypassing the ligand activation of receptors, restored the basal migration of heparinase- and chlorate-treated cells almost to the control level, suggesting that the cell motility machinery was insignificantly affected in cells with degraded and undersulfated HS chains. On the other hand, the downstream phosphorylation of AKT in response to extracellular Hsp90 was substantially impaired in heparinase- and chlorate-treated cells as compared to untreated cells. Taken together, our results demonstrated for the first time that cell surface HSPGs play an important role in the migration and invasion of cancer cells stimulated by extracellular Hsp90 and that plasma membrane-associated HSPGs are required for the efficient transmission of signal from extracellular Hsp90 into the cell. 10.1007/s12192-018-0955-5
Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. Moon James J,Matsumoto Melissa,Patel Shyam,Lee Luke,Guan Jun-Lin,Li Song Journal of cellular physiology Endothelial cell (EC) migration is critical in wound healing and angiogenesis. Fluid shear stress due to blood flow plays an important role in EC migration. However, the role of EC surface heparan sulfate proteoglycans (HSPGs) in EC adhesion, migration, and mechanotransduction is not well understood. Here, we investigated the effects of HSPG disruption on the adhesion, migration, and mechanotransduction of ECs cultured on fibronectin. We showed that disruption of HSPGs with heparinase decreased EC adhesion rate by 40% and adhesion strength by 33%. At the molecular level, HSPG disruption decreased stress fibers and the size of focal adhesions (FAs), increased filopodia formation, and enhanced EC migration. Under flow condition, heparinase treatment increased EC migration speed, but inhibited shear stress-induced directionality of EC migration and the recruitment of phosphorylated focal adhesion kinase in the flow direction, suggesting that HSPGs are important for sensing the direction of shear stress. In addition, decreasing cell adhesion by lowering fibronectin density enhanced EC migration under static and flow condition, but did not affect the directional migration of ECs under flow. Based on our results, we propose that HSPGs play dual roles as mechanotransducer on the EC surface: (1) HSPGs-matrix interaction on the abluminal surface regulates EC migration speed through an adhesion-dependent manner, and (2) HSPGs without binding to matrix (e.g., on the luminal surface) are involved in sensing the direction of flow through an adhesion-independent manner. 10.1002/jcp.20220
Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Hassan Nourhan,Greve Burkhard,Espinoza-Sánchez Nancy A,Götte Martin Cellular signalling Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment. 10.1016/j.cellsig.2020.109822
Mannose-Modified Serum Exosomes for the Elevated Uptake to Murine Dendritic Cells and Lymphatic Accumulation. Choi Eun Seo,Song Jihyeon,Kang Yoon Young,Mok Hyejung Macromolecular bioscience The surface of bovine serum-derived exosomes (EXOs) are modified with α-d-mannose for facile interaction with mannose receptors on dendritic cells (DCs) and for efficient delivery of immune stimulators to the DCs. The surface of the EXOs is modified with polyethylene glycol (PEG) without particle aggregation (≈50 nm) via the incorporation of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) into the lipid layer of the EXO, compared to chemical conjugation by N-hydroxysuccinimide activated PEG (NHS-PEG). PEG modification onto the exosomal surface significantly decreases the non-specific cellular uptake of the EXOs into the DCs. However, the EXOs with mannose-conjugated PEG-DSPE (EXO-PEG-man) exhibit excellent intracellular uptake into the DCs and boost the immune response by the incorporation of adjuvant, monophosphoryl lipid A (MPLA) within the EXO. After an intradermal injection, a higher retention of EXO-PEG-man is observed in the lymph nodes, which could be used for the efficient delivery of immune stimulators and antigens to the lymph nodes in vivo. 10.1002/mabi.201900042
Exosome-based liquid biopsies in cancer: opportunities and challenges. Annals of oncology : official journal of the European Society for Medical Oncology Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells. 10.1016/j.annonc.2021.01.074
Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Sanderson Ralph D,Bandari Shyam K,Vlodavsky Israel Matrix biology : journal of the International Society for Matrix Biology Emergence of the field of exosome biology has opened an exciting door to better understand communication between cells. These tiny nanovesicles act as potent regulators of biological function by delivering proteins, lipids and nucleic acids from the cell of origin to target cells. Recently, several enzymes including membrane-type 1 matrix metalloproteinase (MT1-MMP), insulin-degrading enzyme (IDE), sialidase and heparanase, among others, were localized on the surface of exosomes secreted by various cell types. These exosomal surface enzymes retain their activity and can degrade their natural substrates present within extracellular spaces. To date, enzymes on exosome surfaces have been associated with the mobilization of growth factors, degradation of extracellular matrix macromolecules and destruction of amyloid β plaques. This review focuses on the emerging role of exosomal surface enzymes and how this mechanism of remodeling within the extracellular space may regulate disease progression as related to cancer, inflammation and Alzheimer's disease. 10.1016/j.matbio.2017.10.007
Tumor-derived Exosome Promotes Metastasis via Altering its Phenotype and Inclusions. Journal of Cancer Although tumor-derived exosomes play an important role in the process of metastasis, differences in exosomes secreted by the same cells at different stages or conditions have not been noticed by most of the relevant researchers. Here we developed a lung cancer model in nude mice, and the phenotype and inclusions of exosomes secreted by early and advanced tumors were analysed. The size distribution and surface topography of these two exosomes were not significantly different, but the expression of CD63 in early tumor exosome (E-exosome) was significantly lower than that in advanced tumor exosome (A-exosome). α-SMA expression on HELF cells treated with A-exosome was significantly higher than that treated with E-exosome. The ability of A-exosome to promote the migration of A549 cells was better than E-exosome. Furthermore, small RNA sequence showed that only 3 of the 171 detected-small RNAs were expressed simultaneously in both exosomes. These findings proved that there are significant differences in inclusions and functions between the early and late exosomes of the same tumor. The study highlights the importance of exosomes in cancer metastasis, and might suggest exosomes can be used as biomarkers and therapeutic targets for cancer metastasis. 10.7150/jca.48043
Methods to Study Integrin Functions on Exosomes. Kawamoto Eiji,Park Eun Jeong,Shimaoka Motomu Methods in molecular biology (Clifton, N.J.) Exosomes represent an important group of extracellular vesicles. They are formed in endosomal compartments and are actively secreted to extracellular spaces. Several membrane proteins, including integrins, are present on the surface of exosomes. As exosomal integrins are competent for binding to ligand, they can play important roles in directing the tissue distribution of exosomes. Integrin-directed exosomal trafficking in vivo is involved in regulating the remodeling of cell homing niches for metastatic cancers and migrating lymphocytes. This chapter describes the methods used to study integrin functions on exosomes including: isolation and biophysical characterization of exosomes, exosomal integrin-ligand binding assays, and in vivo competitive exosome homing assays. 10.1007/978-1-0716-0962-0_15
Exosome surface glycans reflect osteogenic differentiation of mesenchymal stem cells: Profiling by an evanescent field fluorescence-assisted lectin array system. Shimoda Asako,Sawada Shin-Ichi,Sasaki Yoshihiro,Akiyoshi Kazunari Scientific reports Extracellular vesicles (EVs) carry information between cells in the form of biomolecules. Such molecules have been found to serve as biomarkers. Glycans attached to surface molecules on EVs are involved in their cellular uptake. In this study, we examined glycan profiles of small EVs which are generally termed exosomes before and after osteogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) by an evanescent field fluorescence-assisted (EFF)-lectin array system to discover glycan biomarkers for osteogenic differentiation. We found few differences between exosomes before and after osteogenic differentiation of MSCs in terms of fundamental characteristics such as size, morphology, and exosomal marker proteins. However, specific lectins bound strongly to exosomes from differentiated cells. Exosomes from osteogenically differentiated MSCs bound strongly to fucose- and mannose-binding lectins, especially at a high concentration of exosomes. In summary, we found that several lectins bound to exosomes from differentiated MSCs more strongly than to those from undifferentiated cells using an EFF-lectin array system, indicating that monitoring exosomal surface glycans may identify predictive indexes of osteogenic differentiation. 10.1038/s41598-019-47760-x
Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Lima Luize G,Ham Sunyoung,Shin Hyunku,Chai Edna P Z,Lek Erica S H,Lobb Richard J,Müller Alexandra F,Mathivanan Suresh,Yeo Belinda,Choi Yeonho,Parker Belinda S,Möller Andreas Nature communications Metastatic spread of a cancer to secondary sites is a coordinated, non-random process. Cancer cell-secreted vesicles, especially exosomes, have recently been implicated in the guidance of metastatic dissemination, with specific surface composition determining some aspects of organ-specific localization. Nevertheless, whether the tumor microenvironment influences exosome biodistribution has yet to be investigated. Here, we show that microenvironmental cytokines, particularly CCL2, decorate cancer exosomes via binding to surface glycosaminoglycan side chains of proteoglycans, causing exosome accumulation in specific cell subsets and organs. Exosome retention results in changes in the immune landscape within these organs, coupled with a higher metastatic burden. Strikingly, CCL2-decorated exosomes are directed to a subset of cells that express the CCL2 receptor CCR2, demonstrating that exosome-bound cytokines are a crucial determinant of exosome-cell interactions. In addition to the finding that cytokine-conjugated exosomes are detected in the blood of cancer patients, we discovered that healthy subjects derived exosomes are also associated with cytokines. Although displaying a different profile from exosomes isolated from cancer patients, it further indicates that specific combinations of cytokines bound to exosomes could likewise affect other physiological and disease settings. 10.1038/s41467-021-23946-8
Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. Salunkhe Shubham,Dheeraj ,Basak Moumita,Chitkara Deepak,Mittal Anupama Journal of controlled release : official journal of the Controlled Release Society Exosomes are natural nanovesicles excreted by many cells for intercellular communication and for transfer of materials including proteins, nucleic acids and even synthetic therapeutic agents. Surface modification of exosomes imparts additional functionality to the exosomes to enable site specific drug delivery and in vivo imaging and tracking and is an emerging area in drug delivery research. The present review focuses upon these modifications on the exosomal surface, the chemistry involved and their impact on targeted drug delivery for the treatment of brain, breast, lung, liver, colon tumors and, heart diseases and for understanding their in vivo fate including their uptake mechanisms, pharmacokinetics and biodistribution. The specific exosomal membrane proteins such as tetraspanins (CD63, CD81, CD9), lactadherin (LA), lysosome associated membrane protein-2b (Lamp-2b) and, glycosyl-phosphatidyl-inositol (GPI) involved in functionalization of exosome surface have also been discussed along with different strategies of surface modification like genetic engineering, covalent modification (click chemistry and metabolic engineering of parent cells of exosomes) and non-covalent modification (multivalent electrostatic interactions, ligand-receptor interaction, hydrophobic interaction, aptamer based modification and modification by anchoring CP05 peptide) along with optical (fluorescent and bioluminescent) and radioactive isotope labelling techniques of exosomes for imaging purpose. 10.1016/j.jconrel.2020.07.042
Comprehensive Analytical Approach toward Glycomic Characterization and Profiling in Urinary Exosomes. Zou Guozhang,Benktander John D,Gizaw Solomon T,Gaunitz Stefan,Novotny Milos V Analytical chemistry Exosomes are extracellular nanosized vesicles with lipid bilayers encapsulating nucleic acids and proteins, both with and without glycosylation. While exosomal nucleic acids and proteins have previously been explored to identify cancer biomarkers with some promising results, little information has been available concerning their glycoconjugate content. Exosomes were isolated from normal urine samples through multistep differential centrifugation. The isolated exosomes have an average size of 146 nm and a spherical shape, as determined by dynamic light scattering and transmission electron microscopy, respectively. N-Glycans were enzymatically released from the isolated vesicles. After being reduced and permethylated, N-glycans were measured by MALDI mass spectrometry. Paucimannosidic, high-mannose, and complex type glycans were identified and their relative abundances were determined. Some detailed structures of these glycans were revealed through liquid chromatography/tandem mass spectrometry (LC/MS-MS). The reduced N-glycans, without being permethylated, were also separated and analyzed by LC/MS-MS, and their structures were further detailed through isomeric separation on porous graphitized carbon (PGC) packed in long capillaries. Using microfractionation before LC/MS-MS, minor multiantennary N-glycans were preconcentrated as based on hydrophobicity or charge. Preconcentration of the reduced and permethylated glycans on a C18 cartridge revealed numerous large glycans, whereas fractionation of the reduced N-glycans by ion-exchange cartridges facilitated detection of sulfated glycans. After removing N-glycans from the original sample aliquot, O-glycans were chemically released from urinary exosomes and profiled, revealing some unusual structures. 10.1021/acs.analchem.7b00062
Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated nanoparticles bound to selective glycans. Choi Yonghyun,Park Uiseon,Koo Hyung-Jun,Park Jin-Seok,Lee Don Haeng,Kim Kyobum,Choi Jonghoon Biosensors & bioelectronics The unique profile of upregulated glycosylation in metastatic cancer cells may form the basis for the development of new biomarkers for the targeting and diagnosis of specific cancers. This study introduces a pancreatic cancer cell-derived exosome detection technology, which is based on the specific binding of lectins to distinctive glycan profiles on the surface of exosomes. Lectins with a high and specific affinity for sialic acid or fucose were attached to bifunctional Janus nanoparticles (JNPs), which facilitated interactions with pancreatic cancer cell-derived exosomes in a microfluidic device. Here, we show that pancreatic cancer cell-derived exosomes from two cell lines and plasma samples collected from patients diagnosed with pancreatic cancer were successfully captured on the lectin-conjugated JNPs with affinities that were comparable to those of CA19-9, a conventional antibody. In addition, exosome detection using our platform could differentiate between metastatic and nonmetastatic pancreatic cancer cells. This study opens the possibility to achieve a new early diagnosis marker based on the glycan properties of pancreatic cancer cell-derived exosomes. 10.1016/j.bios.2021.112980
Stabilization of exosome-targeting peptides via engineered glycosylation. Hung Michelle E,Leonard Joshua N The Journal of biological chemistry Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics. 10.1074/jbc.M114.621383
Recent Insights into Cell Surface Heparan Sulphate Proteoglycans and Cancer. Couchman John R,Multhaupt Hinke,Sanderson Ralph D F1000Research A small group of cell surface receptors are proteoglycans, possessing a core protein with one or more covalently attached glycosaminoglycan chains. They are virtually ubiquitous and their chains are major sites at which protein ligands of many types interact. These proteoglycans can signal and regulate important cell processes, such as adhesion, migration, proliferation, and differentiation. Since many protein ligands, such as growth factors, morphogens, and cytokines, are also implicated in tumour progression, it is increasingly apparent that cell surface proteoglycans impact tumour cell behaviour. Here, we review some recent advances, emphasising that many tumour-related functions of proteoglycans are revealed only after their modification in processes subsequent to synthesis and export to the cell surface. These include enzymes that modify heparan sulphate structure, recycling of whole or fragmented proteoglycans into exosomes that can be paracrine effectors or biomarkers, and lateral interactions between some proteoglycans and calcium channels that impact the actin cytoskeleton. 10.12688/f1000research.8543.1
Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles. Harada Yoichiro,Nakajima Kazuki,Suzuki Takehiro,Fukushige Tomoko,Kondo Kiyotaka,Seino Junichi,Ohkawa Yuki,Suzuki Tadashi,Inoue Hiromasa,Kanekura Takuro,Dohmae Naoshi,Taniguchi Naoyuki,Maruyama Ikuro Cell reports The biogenesis of small extracellular vesicles (sEVs) is regulated by multiple molecular machineries generating considerably heterogeneous vesicle populations, including exosomes and non-exosomal vesicles, with distinct cargo molecules. However, the role of carbohydrate metabolism in generating such vesicle heterogeneity remains largely elusive. Here, we discover that 2-deoxyglucose (2-DG), a well-known glycolysis inhibitor, suppresses the secretion of non-exosomal vesicles by impairing asparagine-linked glycosylation (N-glycosylation) in mouse melanoma cells. Mechanistically, 2-DG is metabolically incorporated into N-glycan precursors, causing precursor degradation and partial hypoglycosylation. N-glycosylation blockade by Stt3a silencing is sufficient to inhibit non-exosomal vesicle secretion. In contrast, N-glycosylation blockade barely influences exosomal secretion of tetraspanin proteins. Functionally, N-glycosylation at specific sites of the hepatocyte growth factor receptor, a cargo protein of non-exosomal vesicles, facilitates its sorting into vesicles. These results uncover a link between N-glycosylation and unconventional vesicle secretion and suggest that N-glycosylation facilitates sEV biogenesis through cargo protein sorting. 10.1016/j.celrep.2020.108261
Altered biodistribution of deglycosylated extracellular vesicles through enhanced cellular uptake. Nishida-Aoki Nao,Tominaga Naoomi,Kosaka Nobuyoshi,Ochiya Takahiro Journal of extracellular vesicles Extracellular vesicles (EVs) from cancer are delivered both proximal and distal organs. EVs are highly glycosylated at the surface where EVs interact with cells and therefore has an impact on their properties and biological functions. Aberrant glycosylation in cancer is associated with cancer progression and metastasis. However, the biological function of glycosylation on the surface of EV is uncovered. We first demonstrated differential glycosylation profiles of EVs and their originated cells, and distinct glycosylation profiles in a brain-metastatic subline BMD2a from its parental human breast cancer cell line, MDA-MB-231-luc-D3H2LN by lectin blot. We then investigated the roles of surface glycoconjugates on EV uptake. N- and/or O-glycosylation removal of fluorescent-labelled BMD2a EVs enhanced cellular uptake to endothelial cells, suggesting that surface glycosylation has inhibitory effects on cellular uptake. Biodistribution of glycosylation-deprived BMD2a EVs administrated intravenously into mice was further analysed ex vivo using near-infrared lipophilic dye. EVs treated with O-deglycosylation enzymes enhanced the accumulation of EVs to the lungs after 24 h from the injection, while N-deglycosylation did not markedly alter biodistribution. As the lungs are first organs in which intravenous blood flows, we suggest that surface glycosylation of cancer-derived EVs avoid promiscuous adhesion to proximal tissues to be delivered to distant organs. 10.1080/20013078.2020.1713527
Cell-based glycan arrays for probing glycan-glycan binding protein interactions. Briard Jennie Grace,Jiang Hao,Moremen Kelley W,Macauley Matthew Scott,Wu Peng Nature communications Glycan microarrays provide a high-throughput means of profiling the interactions of glycan-binding proteins with their ligands. However, the construction of current glycan microarray platforms is time consuming and expensive. Here, we report a fast and cost-effective method for the assembly of cell-based glycan arrays to probe glycan-glycan-binding protein interactions directly on the cell surface. Chinese hamster ovary cell mutants with a narrow and relatively homogeneous repertoire of glycoforms serve as the foundation platforms to develop these arrays. Using recombinant glycosyltransferases, sialic acid, fucose, and analogs thereof are installed on cell-surface glycans to form cell-based arrays displaying diverse glycan epitopes that can be probed with glycan-binding proteins by flow cytometry. Using this platform, high-affinity glycan ligands are discovered for Siglec-15-a sialic acid-binding lectin involved in osteoclast differentiation. Incubating human osteoprogenitor cells with cells displaying a high-affinity Siglec-15 ligand impairs osteoclast differentiation, demonstrating the utility of this cell-based glycan array technology. 10.1038/s41467-018-03245-5
Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells. Shimoda Asako,Tahara Yoshiro,Sawada Shin-Ichi,Sasaki Yoshihiro,Akiyoshi Kazunari Biochemical and biophysical research communications Studies involving the functional analysis of exosomal contents including proteins, DNA, and RNA have been reported. Most membrane proteins and lipids are glycosylated, which controls their physical properties and functions, but little is known about glycans on exosomes owing to the difficulty of analysing them. To shed light on these issues, we collected exosomes from mesenchymal stem cells (MSCs) derived from human adipose tissue for glycan profiling using evanescent-field fluorescence-assisted lectin array as well as analysis of their uptake in vivo. Initial analyses showed that the mean diameter of the collected exosomes was 178 nm and they presented with typical exosomal and MSC markers. Regarding the glycan profiling, exosomes interacted more strongly than the membrane of the original MSCs did with a range of lectins, especially sialic acid-binding lectins. The findings also showed that cellular exosome uptake involved recognition by HeLa cell-surface-bound sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs). Confirming this siglec-related uptake, in vivo experiments involving subcutaneous injection of the fluorescently labelled exosomes into mice showed their transport into lymph nodes and internalization by antigen-presenting cells, particularly those expressing CD11b. Closer analysis revealed the colocalization of the exosomes with siglecs, indicating their involvement in the uptake. These findings provide us with an improved understanding of the importance of exosomal transport and targeting in relation to glycans on exosomal surfaces, potentially enabling us to standardize exosomes when using them for therapeutic purposes. 10.1016/j.bbrc.2017.07.126
Disruption of Core 1-mediated O-glycosylation oppositely regulates CD44 expression in human colon cancer cells and tumor-derived exosomes. Gao Tianbo,Wen Tao,Ge Yang,Liu Jian,Yang Lei,Jiang Yuliang,Dong Xichen,Liu Heshu,Yao Jiannan,An Guangyu Biochemical and biophysical research communications Aberrant O-glycosylation truncates O-glycans and is known to be closely associated with colorectal cancer (CRC), a major gastrointestinal tumor. CD44 is one of the highly post-transcriptionally modified O-glycoproteins participating in a series of physiological and pathobiological processes. In this research, we aimed to investigate whether CD44 expression in cells and exosomes can be influenced by disruption of Core 1-mediated O-glycosylation. Exosomes derived from LS174T and LSC human colon cancer cell lines were isolated from cell culture supernatant and pulled down using tetraspanin-specific antibody CD63 immunoaffinity magnetic beads. Identifications have been performed via transmission electron microscopy (TEM) and flow cytometry. CD63 immunoaffinity-purified exosomes are examined for CD44 expression by flow cytometric analyses. The percentages of CD44 in exosomes derived from abnormally O-glycosylated cells are significantly higher compared with those derived from normal ones, however, which is surprisingly contrary to the cellular expression levels of CD44. The secretion of truncated glycoproteins to the extracellular environment via microvesicles may be most likely its underlying mechanism. CD44 in exosomes might be a potential biomarker of aberrant O-glycosylation. This is the first study indicating that aberrant O-glycosylation can affect expression or delivery of O-glycoproteins via exosomes, which provides us some new sights in therapeutic strategies for human colon cancer. 10.1016/j.bbrc.2019.10.149
In-Depth Compositional and Structural Characterization of N-Glycans Derived from Human Urinary Exosomes. Analytical chemistry The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2-3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans. 10.1021/acs.analchem.9b02620
Glycoconjugates from extracellular vesicles: Structures, functions and emerging potential as cancer biomarkers. Costa Julia Biochimica et biophysica acta. Reviews on cancer Extracellular vesicles (EVs) are released by virtually all cells, carry cellular molecules to the extracellular environment, and may interact with other cells. They are found in body fluids, therefore, constituting useful target sources for the identification of disease biomarkers, for example, in cancer. EVs originate from the plasma membrane or from multivesicular endosomes. They have the same topology as the plasma membrane and are rich in glycoconjugates, displaying specific glycosignatures. Surface glycoconjugates play important roles in EVs biogenesis and in their interaction with other cells. Changes in glycosylation constitute a hallmark of different types of cancer, therefore, the study of glycoconjugates and glycosignatures of EVs appear as promising candidates to identify novel cancer biomarkers and to increase the specificity and sensitivity of the existing clinical biomarkers, many of which are glycosylated. 10.1016/j.bbcan.2017.03.007
Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function. Journal of proteome research In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration. 10.1021/acs.jproteome.6b00811
Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Beckwith Donella M,Cudic Maré Seminars in immunology The transformation from normal to malignant phenotype in human cancers is associated with aberrant cell-surface glycosylation. It has frequently been reported that MUC1, the heavily glycosylated cell-surface mucin, is altered in both, expression and glycosylation pattern, in human carcinomas of the epithelium. The presence of incomplete or truncated glycan structures, often capped by sialic acid, commonly known as tumor-associated carbohydrate antigens (TACAs), play a key role in tumor initiation, progression, and metastasis. Accumulating evidence suggests that expression of TACAs is associated with tumor escape from immune defenses. In this report, we will give an overview of the oncogenic functions of MUC1 that are exerted through TACA interactions with endogenous carbohydrate-binding proteins (lectins). These interactions often lead to creation of a pro-tumor microenvironment, favoring tumor progression and metastasis, and tumor evasion. In addition, we will describe current efforts in the design of cancer vaccines with special emphasis on synthetic MUC1 glycopeptide vaccines. Analysis of the key factors that govern structure-based design of immunogenic MUC1 glycopeptide epitopes are described. The role of TACA type, position, and density on observed humoral and cellular immune responses is evaluated. 10.1016/j.smim.2020.101389
Glioblastomas exploit truncated Olinked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Dusoswa Sophie A,Verhoeff Jan,Abels Erik,Méndez-Huergo Santiago P,Croci Diego O,Kuijper Lisan H,de Miguel Elena,Wouters Valerie M C J,Best Myron G,Rodriguez Ernesto,Cornelissen Lenneke A M,van Vliet Sandra J,Wesseling Pieter,Breakefield Xandra O,Noske David P,Würdinger Thomas,Broekman Marike L D,Rabinovich Gabriel A,van Kooyk Yvette,Garcia-Vallejo Juan J Proceedings of the National Academy of Sciences of the United States of America Glioblastoma is the most aggressive brain malignancy, for which immunotherapy has failed to prolong survival. Glioblastoma-associated immune infiltrates are dominated by tumor-associated macrophages and microglia (TAMs), which are key mediators of immune suppression and resistance to immunotherapy. We and others demonstrated aberrant expression of glycans in different cancer types. These tumor-associated glycans trigger inhibitory signaling in TAMs through glycan-binding receptors. We investigated the glioblastoma glycocalyx as a tumor-intrinsic immune suppressor. We detected increased expression of both tumor-associated truncated O-linked glycans and their receptor, macrophage galactose-type lectin (MGL), on CD163 TAMs in glioblastoma patient-derived tumor tissues. In an immunocompetent orthotopic glioma mouse model overexpressing truncated O-linked glycans (MGL ligands), high-dimensional mass cytometry revealed a wide heterogeneity of infiltrating myeloid cells with increased infiltration of PD-L1 TAMs as well as distant alterations in the bone marrow (BM). Our results demonstrate that glioblastomas exploit cell surface O-linked glycans for local and distant immune modulation. 10.1073/pnas.1907921117
Comparison of functional glycans between cancer stem cells and normal stem cells. Sasaki Norihiko,Itakura Yoko,Gomi Fujiya,Hirano Kazumi,Toyoda Masashi,Ishiwata Toshiyuki Histology and histopathology Cancer stem cells (CSCs) are a small group of cells within a tumor that preserve stemness and enhance regrowth of cancer cells. CSCs have important implications in resistance to conventional therapies and tumor relapse, although their detailed properties remain unknown. Thus, CSCs represent promising targets to improve cancer treatment. So far, a number of cell surface markers containing glycans have been exploited to identify and isolate CSCs. Cell surface glycans are well-known markers for specific cell types and also play important cellular roles, such as regulation of cell signaling. In normal stem cells, including embryonic and tissue stem cells, glycan markers in an undifferentiated state have been identified. These markers are mostly known to regulate signaling pathways required for maintenance of stemness. In contrast, CSC-specific glycans have not been well characterized yet. In this review, we summarize functional commonalities between CSCs and normal stem cells in glycan-mediated signaling pathways. Identification of CSC-specific glycans may lead to early diagnosis and radical treatment of cancer. 10.14670/HH-18-119
The "sugar-coated bullets" of cancer: Tumor-derived exosome surface glycosylation from basic knowledge to applications. Clinical and translational medicine Scientific interest in exosomes has exploded in recent decades. In 1990 only three articles were published on exosomes, while over 1,700 have already been published half-way into 2020. While researchers have shown much interest in exosomes since being discovered in 1981, an appreciation of the potential role of glycans in exosome structure and function has emerged only recently. Glycosylation is one of the most common post-translational modification, which functions in many physiological and pathological aspects of cellular function. Many components of exosomes are heavily glycosylated including proteins, lipids, among others. Thus, glycosylation undoubtedly has a great impact on exosome biosynthesis and function. Despite the importance of glycosylation in exosomes and the recent recognition of them as biomarkers for not only malignancies but also other system dysfunction and disease, the characterization of exosome glycans remains understudied. In this review, we discuss glycosylation patterns of exosomes derived from various tissues, their biological features, and potential for various clinical applications. We highlight state-of-the-art knowledge about the fine structure of exosomes, which will allow researchers to reconstruct them by surface modification. These efforts will likely lead to novel disease-related biomarker discovery, purification tagging, and targeted drug transfer for clinical applications in the future. 10.1002/ctm2.204