logo logo
Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model. Ingavle Ganesh C,Gionet-Gonzales Marissa,Vorwald Charlotte E,Bohannon Laurie K,Clark Kaitlin,Galuppo Larry D,Leach J Kent Biomaterials The efficacy of cell-based therapies as an alternative to autologous bone grafts requires biomaterials to localize cells at the defect and drive osteogenic differentiation. Hydrogels are ideal cell delivery vehicles that can provide instructional cues via their composition or mechanical properties but commonly lack osteoconductive components that nucleate mineral. To address this challenge, we entrapped mesenchymal stromal cells (MSCs) in a composite hydrogel based on two naturally-derived polymers (alginate and hyaluronate) containing biomineralized polymeric microspheres. Mechanical properties of the hydrogels were dependent upon composition. The presentation of the adhesive tripeptide Arginine-Glycine-Aspartic Acid (RGD) from both polymers induced greater osteogenic differentiation of ovine MSCs in vitro compared to gels formed of RGD-alginate or RGD-alginate/hyaluronate alone. We then evaluated the capacity of this construct to stimulate bone healing when transplanting autologous, culture-expanded MSCs into a surgical induced, critical-sized ovine iliac crest bone defect. At 12 weeks post-implantation, defects treated with MSCs transplanted in composite gels exhibited significant increases in blood vessel density, osteoid formation, and bone formation compared to acellular gels or untreated defects. These findings demonstrate the capacity of osteoconductive hydrogels to promote bone formation with autologous MSCs in a large animal bone defect model and provide a promising vehicle for cell-based therapies of bone healing. 10.1016/j.biomaterials.2019.01.005
Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Vo T N,Shah S R,Lu S,Tatara A M,Lee E J,Roh T T,Tabata Y,Mikos A G Biomaterials The present work investigated the osteogenic potential of injectable, dual thermally and chemically gelable composite hydrogels for mesenchymal stem cell (MSC) delivery in vitro and in vivo. Composite hydrogels comprising copolymer macromers of N-isopropylacrylamide were fabricated through the incorporation of gelatin microparticles (GMPs) as enzymatically digestible porogens and sites for cellular attachment. High and low polymer content hydrogels with and without GMP loading were shown to successfully encapsulate viable MSCs and maintain their survival over 28 days in vitro. GMP incorporation was also shown to modulate alkaline phosphatase production, but enhanced hydrogel mineralization along with higher polymer content even in the absence of cells. Moreover, the regenerative capacity of 2 mm thick hydrogels with GMPs only, MSCs only, or GMPs and MSCs was evaluated in vivo in an 8 mm rat critical size cranial defect for 4 and 12 weeks. GMP incorporation led to enhanced bony bridging and mineralization within the defect at each timepoint, and direct bone-implant contact as determined by microcomputed tomography and histological scoring, respectively. Encapsulation of both GMPs and MSCs enabled hydrogel degradation leading to significant tissue infiltration and osteoid formation. The results suggest that these injectable, dual-gelling cell-laden composite hydrogels can facilitate bone ingrowth and integration, warranting further investigation for bone tissue engineering. 10.1016/j.biomaterials.2015.12.026
An Injectable Strong Hydrogel for Bone Reconstruction. Zhao Yanran,Cui Zhiyong,Liu Bingchuan,Xiang Junfeng,Qiu Dong,Tian Yun,Qu Xiaozhong,Yang Zhenzhong Advanced healthcare materials For treating bone defects in periarticular fractures, there is a lack of biomaterial with injectable characteristics, tough structure, and osteogenic capacity for providing a whole-structure support and osteogenesis in the defect area. An injectable hydrogel is an ideal implant, however is weak as load-bearing scaffolds. Herein, a new strategy, i.e., an in situ formation of "active" composite double network (DN), is raised for the preparation of an injectable strong hydrogel particularly against compression. As a demonstration, 4-carboxyphenylboronic acid grafted poly(vinyl alcohol) (PVA) is crosslinked using calcium ions to provide a tough frame while bioactive glass (BG) microspheres are associated by poly(ethylene glycol) to obtain an interpenetrated inorganic network for reinforcement. The injected PVA/BG DN hydrogel gains compressive strength, modulus, and fracture energy of 34 MPa, 0.8 MPa, and 40 kJ m , respectively. Then, the properties can be "autostrengthened" to 57 MPa, 2 MPa, and 65 kJ m by mineralization in 14 days. In vivo experiments prove that the injected DN hydrogel is more efficient to treat femoral supracondylar bone defects than the implanted bulk DN gel. The work suggests a facile way to obtain a strong hydrogel with injectability, cytocompatibility, and tailorable functionality. 10.1002/adhm.201900709
Development of a micro-tissue-mediated injectable bone tissue engineering strategy for large segmental bone defect treatment. Stem cell research & therapy BACKGROUND:Bone tissue engineering is not widely used in clinical treatment. Two main reasons hide behind this: (1) the seed cells are difficult to obtain and (2) the process of tissue engineering bone construction is too complex and its efficiency is still relatively low. It is foreseeable that in the near future, the problem of seed cell sources could be solved completely in tissue engineering bone repair. As for the complex process and low efficiency of tissue engineering bone construction, usually two strategies would be considered: (1) the construction strategy based on injectable bone tissue and (2) the construction strategy based on osteogenic cell sheets. However, the application of injectable bone tissue engineering (iBTE) strategy and osteogenic cell sheet strategy is limited and they could hardly be used directly in repairing defects of large segmental bone, especially load-bearing bone. METHODS:In this study, we built an osteogenic micro-tissue with simple construction but with a certain structure and composition. Based on this, we established a new iBTE repair strategy-osteogenic micro-tissue in situ repair strategy, mainly targeting at solving the problem of large segmental bone defect. The steps are as follows: (1) Build the biodegradable three-dimensional scaffold based on the size of the defect site with 3D printing rapid prototyping technology. (2) Implant the three-dimensional scaffold into the defect site. This scaffold is considered as the "steel framework" that could provide both mechanical support and space for bone tissue growth. (3) Inject the osteogenic micro-tissue (i.e., the "cell-extracellular matrix" complex), which could be considered as "concrete," into the three-dimensional scaffold, to promote the bone tissue regeneration in situ. Meanwhile, the digested cells were injected as the compared group in this experiment. After 3 months, the effect of in situ bone defect repair of osteogenic micro-tissue and digested cells was compared. RESULTS:It is confirmed that osteogenic micro-tissue could achieve a higher efficiency on cell usage and has a better repair effect than the digested cells. CONCLUSIONS:Osteogenic micro-tissue repairing strategy would be a more promising clinical strategy to solve the problem of large segmental bone defect. 10.1186/s13287-018-1064-1