logo logo
The Evolution of Animal Models in Wound Healing Research: 1993-2017. Parnell Laura K S,Volk Susan W Advances in wound care Wound healing is a complex and dynamic series of events influenced by a variety of intrinsic and extrinsic factors. Problematic wounds, particularly chronic wounds and pathologic scars, remain clinically significant burdens. Modeling physiologic and aberrant wound repair processes using or models have contributed to (); however, the fidelity of each model used, particularly with respect to its species-specific limitations, must be taken into account for extrapolation to human patients. Twenty-five years of wound healing models published in (1993-2017) and (2012-2017) were collected and analyzed to determine trends in species utilization and models used. In 25 years, 1,521 original research articles utilizing one or more wound models were published (total of 1,665 models). Although 20 different species were used over the course of 25 years, 5 species were most commonly utilized: human, mouse, rat, pig, and rabbit. modeling was used most frequently, followed by , , and modeling of wound healing processes. A comparison of articles from 1993 to 1997 and 2013 to 2017 periods showed notable differences in model and species usage. Experiments utilizing mouse and human models increased, while the usage of pig models remained constant, rabbit and rat models declined in the more recent time period examined compared to the time period two decades before. This analysis shows notable changes in types of models and species used over time which may be attributed to new knowledge, techniques, technology, and/or reagents. Explorations into mechanisms of limb regeneration and wound healing of noncutaneous tissues have also contributed to a shift in modeling over time. Changes within the journals (, page expansion and increased rejection rates), research funding, and model expense may also influence the observed shifts. 10.1089/wound.2019.1098
The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Ishihara Jun,Ishihara Ako,Starke Richard D,Peghaire Claire R,Smith Koval E,McKinnon Thomas A J,Tabata Yoji,Sasaki Koichi,White Michael J V,Fukunaga Kazuto,Laffan Mike A,Lutolf Matthias P,Randi Anna M,Hubbell Jeffrey A Blood During wound healing, the distribution, availability, and signaling of growth factors (GFs) are orchestrated by their binding to extracellular matrix components in the wound microenvironment. Extracellular matrix proteins have been shown to modulate angiogenesis and promote wound healing through GF binding. The hemostatic protein von Willebrand factor (VWF) released by endothelial cells (ECs) in plasma and in the subendothelial matrix has been shown to regulate angiogenesis; this function is relevant to patients in whom VWF deficiency or dysfunction is associated with vascular malformations. Here, we show that VWF deficiency in mice causes delayed wound healing accompanied by decreased angiogenesis and decreased amounts of angiogenic GFs in the wound. We show that in vitro VWF binds to several GFs, including vascular endothelial growth factor-A (VEGF-A) isoforms and platelet-derived growth factor-BB (PDGF-BB), mainly through the heparin-binding domain (HBD) within the VWF A1 domain. VWF also binds to VEGF-A and fibroblast growth factor-2 (FGF-2) in human plasma and colocalizes with VEGF-A in ECs. Incorporation of the VWF A1 HBD into fibrin matrices enables sequestration and slow release of incorporated GFs. In vivo, VWF A1 HBD-functionalized fibrin matrices increased angiogenesis and GF retention in VWF-deficient mice. Treatment of chronic skin wounds in diabetic mice with VEGF-A165 and PDGF-BB incorporated within VWF A1 HBD-functionalized fibrin matrices accelerated wound healing, with increased angiogenesis and smooth muscle cell proliferation. Therefore, the VWF A1 HBD can function as a GF reservoir, leading to effective angiogenesis and tissue regeneration. 10.1182/blood.2019000510
Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends in cell biology Skin architecture and function depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, it is now recognised that there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss recent insights into how these distinct cell populations are maintained and coordinated during development, homeostasis, and wound healing. We highlight the importance of the local environment, or niche, in cellular plasticity. We also discuss new mechanisms that have been identified as influencing wound repair and cancer progression. 10.1016/j.tcb.2018.05.002
Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Hoyle Nathaniel P,Seinkmane Estere,Putker Marrit,Feeney Kevin A,Krogager Toke P,Chesham Johanna E,Bray Liam K,Thomas Justyn M,Dunn Ken,Blaikley John,O'Neill John S Science translational medicine Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping, which imparts an approximately 24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence, the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately affect the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse's active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than nighttime wounds. We suggest that circadian regulation of the cytoskeleton influences wound-healing efficacy from the cellular to the organismal scale. 10.1126/scitranslmed.aal2774
Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Chin Jiah Shin,Madden Leigh,Chew Sing Yian,Becker David L Advanced drug delivery reviews Acute wound healing is an orderly process of four overlapping events: haemostasis, inflammation, proliferation and remodelling. A drug delivery system with a temporal control of release could promote each of these events sequentially. However, acute wound healing normally proceeds very well in healthy individuals and there is little need to promote it. In the elderly and diabetics however, healing is often slow and wounds can become chronic and we need to promote their healing. Targeting the events of acute wound healing would not be appropriate for a chronic wound, which have stalled in the proinflammatory phase. They also have many additional problems such as poor circulation, low oxygen, high levels of leukocytes, high reactive oxygen species, high levels of proteolytic enzymes, high levels of proinflammatory cytokines, bacterial infection and high pH. The future challenge will be to tackle each of these negative factors to create a wound environment conducive to healing. 10.1016/j.addr.2019.03.006
Collective Cell Migration in 3D Epithelial Wound Healing. Xiao Yuan,Riahi Reza,Torab Peter,Zhang Donna D,Wong Pak Kin ACS nano Collective cell migration plays a pivotal role in development, wound healing, and metastasis, but little is known about the mechanisms and coordination of cell migration in 3D microenvironments. Here, we demonstrate a 3D wound healing assay by photothermal ablation for investigating collective cell migration in epithelial tissue structures. The nanoparticle-mediated photothermal technique creates local hyperthermia for selective cell ablation and induces collective cell migration of 3D tissue structures. By incorporating dynamic single cell gene expression analysis, live cell actin staining, and particle image velocimetry, we show that the wound healing response consists of 3D vortex motion moving toward the wound followed by the formation of multicellular actin bundles and leader cells with active actin-based protrusions. Inhibition of ROCK signaling disrupts the multicellular actin bundle and enhances the formation of leader cells at the leading edge. Furthermore, single cell gene expression analysis, pharmacological perturbation, and RNA interference reveal that Notch1-Dll4 signaling negatively regulates the formation of multicellular actin bundles and leader cells. Taken together, our study demonstrates a platform for investigating 3D collective cell migration and underscores the essential roles of ROCK and Notch1-Dll4 signaling in regulating 3D epithelial wound healing. 10.1021/acsnano.8b06305
Injury-activated glial cells promote wound healing of the adult skin in mice. Parfejevs Vadims,Debbache Julien,Shakhova Olga,Schaefer Simon M,Glausch Mareen,Wegner Michael,Suter Ueli,Riekstina Una,Werner Sabine,Sommer Lukas Nature communications Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders. 10.1038/s41467-017-01488-2
Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Desmet Céline M,Préat Véronique,Gallez Bernard Advanced drug delivery reviews Oxygen plays a key role in wound healing, and hypoxia is a major cause of wound healing impairment; therefore, treatments to improve hemodynamics and increase wound oxygenation are of particular interest for the treatment of chronic wounds. This article describes the roles of oxygen and angiogenesis in wound healing as well as the tools used to evaluate tissue oxygenation and perfusion and then presents a review of nanomedicines and gene therapies designed to improve perfusion and oxygenation and accelerate wound healing. 10.1016/j.addr.2018.02.001
miRNA delivery for skin wound healing. Meng Zhao,Zhou Dezhong,Gao Yongsheng,Zeng Ming,Wang Wenxin Advanced drug delivery reviews The wound healing has remained a worldwide challenge as one of significant public health problems. Pathological scars and chronic wounds caused by injury, aging or diabetes lead to impaired tissue repair and regeneration. Due to the unique biological wound environment, the wound healing is a highly complicated process, efficient and targeted treatments are still lacking. Hence, research-driven to discover more efficient therapeutics is a highly urgent demand. Recently, the research results have revealed that microRNA (miRNA) is a promising tool in therapeutic and diagnostic fields because miRNA is an essential regulator in cellular physiology and pathology. Therefore, new technologies for wound healing based on miRNA have been developed and miRNA delivery has become a significant research topic in the field of gene delivery. 10.1016/j.addr.2017.12.011
Immunomodulation as Rescue for Chronic Atonic Skin Wounds. Opdenakker Ghislain,Van Damme Jo,Vranckx Jan Jeroen Trends in immunology Chronic skin wounds, caused by arterial or venous insufficiency or by physical pressure, constitute an increasing medical problem as populations age. Whereas typical wounds are characterized by local inflammation that participates in the healing process, atonic wounds lack inflammatory markers, such as neutrophil infiltration, and generally do not heal. Recently, prominent roles in the immunopathology of chronic wounds were attributed to dysregulations in specific cytokines, chemokines, matrix metalloproteinases (MMPs), and their substrates. Together with the complement system, these molecular players provide necessary defense against infections, initiate angiogenesis, and prepare tissue reconstitution. Here, we review the current state of the field and include the concept that, aside from surgery and stem cell therapy, healing may be enhanced by immunomodulating agents. 10.1016/j.it.2018.01.010
Local Immunomodulation Using an Adhesive Hydrogel Loaded with miRNA-Laden Nanoparticles Promotes Wound Healing. Small (Weinheim an der Bergstrasse, Germany) Chronic wounds are characterized by impaired healing and uncontrolled inflammation, which compromise the protective role of the immune system and may lead to bacterial infection. Upregulation of miR-223 microRNAs (miRNAs) shows driving of the polarization of macrophages toward the anti-inflammatory (M2) phenotype, which could aid in the acceleration of wound healing. However, local-targeted delivery of microRNAs is still challenging, due to their low stability. Here, adhesive hydrogels containing miR-223 5p mimic (miR-223*) loaded hyaluronic acid nanoparticles are developed to control tissue macrophages polarization during wound healing processes. In vitro upregulation of miR-223* in J774A.1 macrophages demonstrates increased expression of the anti-inflammatory gene Arg-1 and a decrease in proinflammatory markers, including TNF-α, IL-1β, and IL-6. The therapeutic potential of miR-223* loaded adhesive hydrogels is also evaluated in vivo. The adhesive hydrogels could adhere to and cover the wounds during the healing process in an acute excisional wound model. Histological evaluation and quantitative polymerase chain reaction (qPCR) analysis show that local delivery of miR-223* efficiently promotes the formation of uniform vascularized skin at the wound site, which is mainly due to the polarization of macrophages to the M2 phenotype. Overall, this study demonstrates the potential of nanoparticle-laden hydrogels conveying miRNA-223* to accelerate wound healing. 10.1002/smll.201902232
Muscle wound healing in rainbow trout (Oncorhynchus mykiss). Schmidt J G,Andersen E W,Ersbøll B K,Nielsen M E Fish & shellfish immunology We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to bathing in an immunomodulatory β-glucan product during wound healing, but found this to have very limited effect on wound healing in contrast to a previously published study on common carp. 10.1016/j.fsi.2015.12.010
[The modern approach to wound treatment]. Komarcević A Medicinski pregled INTRODUCTION:Wound healing is a complex process involving interactions among a variety of different cell types. The normal wound repair process consists of three phases--inflammation, proliferation, and remodeling that occur in a predictable series of cellular and biochemical events. Wounds are classified according to various criteria: etiology, lasting, morphological characteristics, communications with solid or hollow organs, the degree of contamination. In the last few years many authors use the Color Code Concept, which classifies wounds as red, yellow and black wounds. This paper presents conventional methods of local wound treatment (mechanical cleansing, disinfection with antiseptic solutions, wound debridement--surgical, biological and autolytic; wound closure, topical antibiotic treatment, dressing), as well as general measures (sedation, antitetanous and antibiotic protection, preoperative evaluation and correction of malnutrition, vasoconstriction, hyperglycemia and steroid use, appropriate surgical technique, and postoperative prevention of vasoconstriction through pain relief, warming and adequate volume resuscitation). THE ROLE OF PHYSIOLOGICAL FACTORS AND ANTIMICROBIAL AGENTS IN WOUND HEALING:Growth factors play a role in cell division, migration, differentiation, protein expression, enzyme production and have a potential ability to heal wounds by stimulating angiogenesis and cellular proliferation, affecting the production and the degradation of the extracellular matrix, and by being chemotactic for inflammatory cells and fibroblasts. There are seven major families of growth factors: epidermal growth factor (EGF), transforming growth factor-beta (TGF-beta), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), interleukins (ILs), and colony-stimulating factor (CSF). Acute wounds contain many growth factors that play a crucial role in the initial phases of wound healing. The events of early wound healing reflect a finely balanced environment leading to uncomplicated and rapid wound healing. Chronic wounds, for many reasons, have lost this fine balance. Multiple studies have evaluated the effect that exogenously applied growth factors have on the healing of chronic wounds. In the study conducted by Knighton and colleagues, topical application of mixture of various growth factors (PDGF, TGF-beta, PDAF, PF4, PDEGF) demonstrated increased wound healing over controls. Brown and associates demonstrated a decrease in skin graft donor site healing time of 1 day using topically applied EGF. Herndon and ass. used systemic growth hormone in burned children and reduction in healing time made a significant clinical difference by allowing earlier wound coverage and decreasing the duration of hospitalization. The TGF family of growth factors is believed to be primarily responsible for excessive scar formation, especially the beta 1 and beta 2 isoforms. TGF-beta 3 isoform has recently been described and may have an inhibitory function on scar formation by being a natural antagonist to the TGF-beta 1 and TGF-beta 2 isoforms. Cytokines, especially interferon-alpha (INF-alpha), INF-alpha, and INF-alpha 2b, may also reduce scar formation. These cytokines decrease the proliferation rate of fibroblasts and reduce the rate of collagen and fibronectin synthesis by reducing the production of mRNA. Expression of nitric oxide synthase (NOS) and heat shock proteins (HSP) have an important role in wound healing, as well as trace elements (zinc, copper, manganese). Applications of some drugs (antioxidants--asiaticoside, vitamin E and ascorbic acid; calcium D-pantothenate, exogenous fibronectin; antileprosy drugs--oil of hydnocarpus; alcoholic extract of yeast) accelerate wound healing. Thymic peptide thymosin beta 4 (T beta 4R) topically applicated, increases collagen deposition and angiogenesis and stimulates keratinocyte migration. Thymosin alpha 1 (T alpha 1R), peptide isolated from the thymus, is a potent chemoattractant which accelerates angiogenesis and wound healing. On the contrary, steroid drugs, hemorrhage and denervation of wounds have negative effect on the healing process.
[Advances in the research of influence of pH value on healing of chronic wounds]. Wang Y,Li X,Zhao W,Gao Z Z,Zheng M J,Pang Y L,Chen Z Y Zhonghua shao shang za zhi = Zhonghua shaoshang zazhi = Chinese journal of burns Chronic wounds are with characteristics of long last time and cannot heal in time, which is a problem in clinic. Wound pH value plays an important role in the process of healing of chronic wounds. In this paper, we review the relative researches on wound pH value and wound microenvironment, summarize the potential relationship between wound pH value and healing of chronic wounds, as well as the method to change pH value of chronic wounds, thereby to provide theoretical basis for the treatment of chronic wounds in clinic. 10.3760/cma.j.issn.1009-2587.2019.06.016
[Advances in the research of the relationship between wound temperature and wound healing]. Zhu L Y,Guo S X,Wu P,Li Q,Ho Z J,Yu M R,Weng T T,Han C M Zhonghua shao shang za zhi = Zhonghua shaoshang zazhi = Chinese journal of burns There are many factors that may affect the microenvironment of acute and chronic wounds. This article reviews the relationship between temperature factor in the external microenvironment of wound surface and wound healing. The temperature changes in different types and stages of wounds are closely related to the wound healing status. Therefore, wound temperature monitoring provides timely, reliable, and non-invasive method in the evaluation of wound status. As low temperature affects the physiological state of wound, relieving the low temperature state and maintaining normal temperature of the microenvironment of wound can promote wound healing. Further research is needed on the wound repair related effector cell proliferation and the mechanism of regulatory function to determine the optimal constant temperature and heat treatment duration needed for wound healing. 10.3760/cma.j.issn.1009-2587.2018.11.021
Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review. Salvo Pietro,Dini Valentina,Kirchhain Arno,Janowska Agata,Oranges Teresa,Chiricozzi Andrea,Lomonaco Tommaso,Di Francesco Fabio,Romanelli Marco Sensors (Basel, Switzerland) Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring. 10.3390/s17122952
Measurement of pH, exudate composition and temperature in wound healing: a systematic review. Power G,Moore Z,O'Connor T Journal of wound care OBJECTIVE:To assess the potential of measurements of pH, exudate composition and temperature in wounds to predict healing outcomes and to identify the methods that are employed to measure them. METHOD:A systematic review based on the outcomes of a search strategy of quantitative primary research published in the English language was conducted. Inclusion criteria limited studies to those involving in vivo and human participants with an existing or intentionally provoked wound, defined as 'a break in the epithelial integrity of the skin', and excluded in vitro and animal studies. Data synthesis and analysis was performed using structured narrative summaries of each included study arranged by concept, pH, exudate composition and temperature. The Evidence Based Literature (EBL) Critical Appraisal Checklist was implemented to appraise the quality of the included studies. RESULTS:A total of 23 studies, three for pH (mean quality score 54.48%), 12 for exudate composition (mean quality score 46.54%) and eight for temperature (mean quality score 36.66%), were assessed as eligible for inclusion in this review. Findings suggest that reduced pH levels in wounds, from alkaline towards acidic, are associated with improvements in wound condition. Metalloproteinase-9 (MMP-9), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase (TIMP), neutrophil elastase (NE) and albumin, in descending order, were the most frequently measured analytes in wounds. MMP-9 emerged as the analyte which offers the most potential as a biomarker of wound healing, with elevated levels observed in acute or non-healing wounds and decreasing levels in wounds progressing in healing. Combined measures of different exudate components, such as MMP/TIMP ratios, also appeared to offer substantial potential to indicate wound healing. Finally, temperature measurements are highest in non-healing, worsening or acute wounds and decrease as wounds progress towards healing. Methods used to measure pH, exudate composition and temperature varied greatly and, despite noting some similarities, the studies often yielded significantly contrasting results. Furthermore, a limitation to the generalisability of the findings was the overall quality scores of the research studies, which appeared suboptimal. CONCLUSION:Despite some promising findings, there was insufficient evidence to confidently recommend the use of any of these measures as predictors of wound healing. pH measurement appeared as the most practical method for use in clinical practice to indicate wound healing outcomes. Further research is required to increase the strength of evidence and develop a greater understanding of wound healing dynamics. 10.12968/jowc.2017.26.7.381
[Research progress of adipose-derived stem cells in skin wound healing]. Tang Shenli,Tan Qiuwen,Zhou Yuting,Lü Qing Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery Objective:To review the research progress of adipose-derived stem cells (ADSCs) in skin wound healing. Methods:The recent experiments and clinical studies on the role of ADSCs in skin wound healing were extensively retrieved and analyzed. Additionally, possible mechanisms and novel application strategies were proposed. Results:As confirmed by and experiments and clinical studies, ADSCs promote skin wound healing mainly by two mechanisms: differentiation to target cells that participate in skin wound healing and cytokines paracrine to promote proliferation and migration of various cell lines that are mandatory to promote skin wound healing. Moreover, scaffold materials and cell sheet technology may further add to the potency of ADSCs in promoting skin wound healing. Conclusion:Remarkable progress has been made in the application of ADSCs in skin wound healing. Further studies are needed to explore the application methods of ADSCs. 10.7507/1002-1892.201701003
[Research progress in adipose tissue promoted wound healing]. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery OBJECTIVE:To summarize recent progress in adipose tissue acting as a more efficient and ideal therapy to facilitate wound repair and evaluate the therapeutic values of adipose tissue. METHODS:The related literature about adipose tissue for wound healing in recent years was reviewed and analyzed. RESULTS:Enormous studies focus on the capacity of adipose tissue to accelerate wound healing including cellular components, extracellular matrix, and paracrine signaling have been investigated. CONCLUSION:Adipose tissue has generated great interest in recent years because of unique advantages such as abundant and accessible source, thriven potential to enhance the regeneration and repair of damaged tissue. However, there is still a need to explore the mechanism that adipose tissue regulates cellular function and tissue regeneration in order to facilitate clinical application of adipose tissue in wound healing. 10.7507/1002-1892.201811095