logo logo
Delineating the Decussating Dentato-rubro-thalamic Tract and Its Connections in Humans Using Diffusion Spectrum Imaging Techniques. Ou Si-Qi,Wei Peng-Hu,Fan Xiao-Tong,Wang Yi-He,Meng Fei,Li Mu-Yang,Shan Yong-Zhi,Zhao Guo-Guang Cerebellum (London, England) The objective of this study was to identify the decussating dentato-rubro-thalamic tract (d-DRTT) and its afferent and efferent connections in healthy humans using diffusion spectrum imaging (DSI) techniques. In the present study, the trajectory and lateralization of the d-DRTT was explored using data from subjects in the Massachusetts General Hospital-Human Connectome Project adult diffusion dataset. The afferent and efferent networks that compose the cerebello-thalamo-cerebral pathways were also reconstructed. Correlation analysis was performed to identify interrelationships between subdivisions of the cerebello-dentato-rubro-thalamic and thalamo-cerebral connections. The d-DRTT was visualized bilaterally in 28 subjects. According to a normalized quantitative anisotropy and lateralization index evaluation, the left and right d-DRTT were relatively symmetric. Afferent regions were found mainly in the posterior cerebellum, especially the entire lobule VII (crus I, II and VIIb). Efferent fibers mainly are projected to the contralateral frontal cortex, including the motor and nonmotor regions. Correlations between cerebello-thalamic connections and thalamo-cerebral connections were positive, including the lobule VIIa (crus I and II) to the medial prefrontal cortex (MPFC) and the dorsolateral prefrontal cortex and lobules VI, VIIb, VIII, and IX, to the MPFC and motor and premotor areas. These results provide DSI-based tratographic evidence showing segregated and parallel cerebellar outputs to cerebral regions. The posterior cerebellum may play an important role in supporting and handling cognitive activities through d-DRTT. Future studies will allow for a more comprehensive understanding of cerebello-cerebral connections. 10.1007/s12311-021-01283-2
Development of cerebral fiber pathways in cats revealed by diffusion spectrum imaging. Takahashi Emi,Dai Guangping,Wang Ruopeng,Ohki Kenichi,Rosen Glenn D,Galaburda Albert M,Grant P Ellen,Wedeen Van J NeuroImage Examination of the three-dimensional axonal pathways in the developing brain is key to understanding the formation of cerebral connectivity. By tracing fiber pathways throughout the entire brain, diffusion tractography provides information that cannot be achieved by conventional anatomical MR imaging or histology. However, standard diffusion tractography (based on diffusion tensor imaging, or DTI) tends to terminate in brain areas with low water diffusivity, indexed by low diffusion fractional anisotropy (FA), which can be caused by crossing fibers as well as fibers with less myelin. For this reason, DTI tractography is not effective for delineating the structural changes that occur in the developing brain, where the process of myelination is incomplete, and where crossing fibers exist in greater numbers than in the adult brain. Unlike DTI, diffusion spectrum imaging (DSI) can define multiple directions of water diffusivity; as such, diffusion tractography based on DSI provides marked flexibility for delineation of fiber tracts in areas where the fiber architecture is complex and multidirectional, even in areas of low FA. In this study, we showed that FA values were lower in the white matter of newborn (postnatal day 0; P0) cat brains than in the white matter of infant (P35) and juvenile (P100) cat brains. These results correlated well with histological myelin stains of the white matter: the newborn kitten brain has much less myelin than that found in cat brains at later stages of development. Using DSI tractography, we successfully identified structural changes in thalamo-cortical and cortico-cortical association tracts in cat brains from one stage of development to another. In newborns, the main body of the thalamo-cortical tract was smooth, and fibers branching from it were almost straight, while the main body became more complex and branching fibers became curved reflecting gyrification in the older cats. Cortico-cortical tracts in the temporal lobe were smooth in newborns, and they formed a sharper angle in the later stages of development. The cingulum bundle and superior longitudinal fasciculus became more visible with time. Within the first month after birth, structural changes occurred in these tracts that coincided with the formation of the gyri. These results show that DSI tractography has the potential for mapping morphological changes in low FA areas associated with growth and development. The technique may also be applicable to the study of other forms of brain plasticity, including future studies in vivo. 10.1016/j.neuroimage.2009.09.002
Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PloS one BACKGROUND:The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. OBJECTIVES:To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI). METHODS:We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. RESULTS:Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2) connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus. CONCLUSION:For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions. 10.1371/journal.pone.0005101
White matter microstructural alterations in amblyopic adults revealed by diffusion spectrum imaging with systematic tract-based automatic analysis. Tsai Tzu-Hsun,Su Hsien-Te,Hsu Yung-Chin,Shih Yao-Chia,Chen Chien-Chung,Hu Fung-Rong,Tseng Wen-Yih Isaac The British journal of ophthalmology BACKGROUND/AIM:We investigated the microstructural changes in white matter of adults with amblyopia using diffusion spectrum imaging with systematic tract-based automatic analysis of the whole brain. METHODS:Ten adults with amblyopia (six women and four men, 33.6±10.6 years old on average) and 20 age- and sex-matched normal-sighted controls were enrolled. The mean generalised fractional anisotropy (GFA) was measured in 76 white matter tracts and compared between the experimental and control groups using a threshold-free cluster-weighted method and -test. A 2-percentile cut-off was used to identify segments with the greatest differences between the two groups. RESULTS:Participants with amblyopia had significantly lower GFA values than the controls in 11 segments located in nine white matter tracts, which included the following: left arcuate fasciculus, left frontal aslant tract, left fornix and left inferior fronto-occipital fasciculus of the association fibres; left thalamic radiations of the auditory nerve and bilateral optic radiations of the projection fibres; and genu and middle temporal gyrus of the callosal fibres. Amblyopic participants had statistically higher GFA values in the bilateral uncinate fasciculus than those of the controls. CONCLUSION:This preliminary study using whole-brain tractographic analysis of white matter reveals association between abnormal early visual processing and alterations in brain architecture, which may be related to various higher-level deficits, such as audiovisual integration and hand-eye coordination in patients with amblyopia. 10.1136/bjophthalmol-2017-311733
Co-analysis of brain structure and function using fMRI and diffusion-weighted imaging. Phillips Jeffrey S,Greenberg Adam S,Pyles John A,Pathak Sudhir K,Behrmann Marlene,Schneider Walter,Tarr Michael J Journal of visualized experiments : JoVE The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)(1, 2) protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest. 10.3791/4125
Diffusion in realistic biophysical systems can lead to aliasing effects in diffusion spectrum imaging. Lacerda Luis M,Sperl Jonathan I,Menzel Marion I,Sprenger Tim,Barker Gareth J,Dell'Acqua Flavio Magnetic resonance in medicine PURPOSE:Diffusion spectrum imaging (DSI) is an imaging technique that has been successfully applied to resolve white matter crossings in the human brain. However, its accuracy in complex microstructure environments has not been well characterized. THEORY AND METHODS:Here we have simulated different tissue configurations, sampling schemes, and processing steps to evaluate DSI performances' under realistic biophysical conditions. A novel approach to compute the orientation distribution function (ODF) has also been developed to include biophysical constraints, namely integration ranges compatible with axial fiber diffusivities. RESULTS:Performed simulations identified several DSI configurations that consistently show aliasing artifacts caused by fast diffusion components for both isotropic diffusion and fiber configurations. The proposed method for ODF computation showed some improvement in reducing such artifacts and improving the ability to resolve crossings, while keeping the quantitative nature of the ODF. CONCLUSION:In this study, we identified an important limitation of current DSI implementations, specifically the presence of aliasing due to fast diffusion components like those from pathological tissues, which are not well characterized, and can lead to artifactual fiber reconstructions. To minimize this issue, a new way of computing the ODF was introduced, which removes most of these artifacts and offers improved angular resolution. Magn Reson Med 76:1837-1847, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 10.1002/mrm.26080
Radial q-space sampling for DSI. Baete Steven H,Yutzy Stephen,Boada Fernando E Magnetic resonance in medicine PURPOSE:Diffusion spectrum imaging (DSI) has been shown to be an effective tool for noninvasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI is used to improve the angular resolution and accuracy of the reconstructed orientation distribution functions. METHODS:Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the orientation distribution functions at the same angular location by the Fourier slice theorem. RESULTS:Computer simulations and in vivo brain results demonstrate that radial diffusion spectrum imaging correctly estimates the orientation distribution functions when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. CONCLUSION:The nominal angular resolution of radial diffusion spectrum imaging depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. Magn Reson Med 76:769-780, 2016. © 2015 Wiley Periodicals, Inc. 10.1002/mrm.25917
[Diffusion spectrum magnetic resonance imaging]. Tian Lin,Yan Hao,Zhang Dai Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences Diffusion spectrum imaging (DSI), a newly developed MRI technique, affords the capacity to map complex fiber architectures in tissues with sufficient angular resolution by imaging the spectra of tissue water diffusion. By contrast, diffusion tensor imaging (DTI), the currently widely used technique based on the 2nd order tensor model, obtains an approximation of the complex diffusion, and provides only one global maximal direction corresponding to the primary eigenvector for each voxel. As a generalized model-free diffusion imaging technique, firstly, DSI employs the probability density function to describe the diffusion process in each voxel; secondly, a sufficient dense signal sample derived from repeated applications of diffusion-weighed gradients ensures its capability to resolve the diffusion probability density function; thirdly, specific computer visualization techniques are used to extract the diffusion information and reconstruct the geometrical properties of tissue microstructure. The capacity to unravel complex tissue architecture, recent improvements in hardware and ongoing optimization of sequence design and algorithm enable a rapid growth of DSI for research use and future incorporation into clinical protocols. This paper introduces the basic principles of DSI and then compares the characteristics of DSI and DTI schemes. Finally, the typical applications of DSI to date are reviewed.
Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Nimsky Christopher,Ganslandt Oliver,Hastreiter Peter,Wang Ruopeng,Benner Thomas,Sorensen A Gregory,Fahlbusch Rudolf Neurosurgery OBJECTIVE:To investigate the intraoperative displacement of major white matter tracts during glioma resection by comparing preoperative and intraoperative diffusion tensor imaging-based fiber tracking. METHODS:In 37 patients undergoing glioma surgery, preoperative and intraoperative diffusion tensor imaging was performed with a 1.5-T magnetic resonance scanner applying an echo-planar imaging sequence with six diffusion directions. For three-dimensional tractography, we implemented a knowledge-based multiple-region-of-interest approach applying user-defined seed regions in the color-coded maps of fractional anisotropy. Tracking was initiated in both the retrograde and orthograde directions according to the direction of the principal eigenvector in each voxel of the region of interest. The tractography results were also assigned color, applying the convention used in color-coded fractional anisotropy maps. RESULTS:Preoperative and intraoperative fiber tracking was technically feasible in all patients. Fiber tract visualization gave a quick and intuitive overview of the displaced course of white matter tracts in three-dimensional space. Comparison of preoperative and intraoperative tractography depicted a marked shifting of major white matter tracts during glioma removal. Maximum white matter tract shifting ranged from -8 to +15 mm (+2.7 +/- 6.0 mm; mean +/- standard deviation); in 29.7%, an inward and in 62.2%, an outward shifting was detected. CONCLUSION:Comparing preoperative and intraoperative fiber tracking visualizes a marked shifting and deformation of major white matter tracts because of tumor removal. This shifting emphasizes the need for an intraoperative update of navigation systems during resection of deep-seated tumor portions near eloquent brain areas. Fiber tracking is a method not only for preoperative neurosurgical visualization but also for further intraoperative planning. 10.1227/01.neu.0000279214.00139.3b
Visualization of Cranial Nerves Using High-Definition Fiber Tractography. Yoshino Masanori,Abhinav Kumar,Yeh Fang-Cheng,Panesar Sandip,Fernandes David,Pathak Sudhir,Gardner Paul A,Fernandez-Miranda Juan C Neurosurgery BACKGROUND:Recent studies have demonstrated diffusion tensor imaging tractography of cranial nerves (CNs). Spatial and angular resolution, however, is limited with this modality. A substantial improvement in image resolution can be achieved with high-angle diffusion magnetic resonance imaging and atlas-based fiber tracking to provide detailed trajectories of CNs. OBJECTIVE:To use high-definition fiber tractography to identify CNs in healthy subjects and patients with brain tumors. METHODS:Five neurologically healthy adults and 3 patients with brain tumors were scanned with diffusion spectrum imaging that allowed high-angular-resolution fiber tracking. In addition, a 488-subject diffusion magnetic resonance imaging template constructed from the Human Connectome Project data was used to conduct atlas space fiber tracking of CNs. RESULTS:The cisternal portions of most CNs were tracked and visualized in each healthy subject and in atlas fiber tracking. The entire optic radiation, medial longitudinal fasciculus, spinal trigeminal nucleus/tract, petroclival portion of the abducens nerve, and intrabrainstem portion of the facial nerve from the root exit zone to the adjacent abducens nucleus were identified. This suggested that the high-angular-resolution fiber tracking was able to distinguish the facial nerve from the vestibulocochlear nerve complex. The tractography clearly visualized CNs displaced by brain tumors. These tractography findings were confirmed intraoperatively. CONCLUSION:Using high-angular-resolution fiber tracking and atlas-based fiber tracking, we were able to identify all CNs in unprecedented detail. This implies its potential in localization of CNs during surgical planning. ABBREVIATIONS:CN, cranial nerveDSI, diffusion spectrum imagingDTI, diffusion tensor imagingHCP, Human Connectome ProjectHDFT, high-definition fiber tractographyMLF, medial longitudinal fasciculusODF, orientation distribution functionROI, region of interest. 10.1227/NEU.0000000000001241
Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Hagmann Patric,Jonasson Lisa,Maeder Philippe,Thiran Jean-Philippe,Wedeen Van J,Meuli Reto Radiographics : a review publication of the Radiological Society of North America, Inc The complex structural organization of the white matter of the brain can be depicted in vivo in great detail with advanced diffusion magnetic resonance (MR) imaging schemes. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique-the mapping of apparent diffusion coefficient values-to the more complex, such as diffusion tensor imaging, q-ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained differs according to the technique used. To fully understand how diffusion MR imaging works, it is helpful to be familiar with the physical principles of water diffusion in the brain and the conceptual basis of each imaging technique. Knowledge of the technique-specific requirements with regard to hardware and acquisition time, as well as the advantages, limitations, and potential interpretation pitfalls of each technique, is especially useful. 10.1148/rg.26si065510
Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Wu Yupeng,Sun Dandan,Wang Yong,Wang Yunjie,Wang Yibao Brain research The temporo-parieto-occipital (TPO) junction plays a unique role in human high-level neurological functions. Long-range fibers from and to this area have been described in detail but little is known about short TPO tracts mediating local connectivity. In this study, we performed high angular diffusion spectrum imaging (DSI) analyses to visualize the short TPO connections in the human brain. Fiber tracking was conducted on a subject-specific approach (10 subjects) and a template of 90 subjects (NTU-90 Atlas). Three tracts were identified: posterior segment of the superior longitudinal fasciculus (SLF-V), connecting the posterior part of the middle and inferior temporal gyri with the angular gyrus and supramarginal gyrus, vertical occipital fasciculus (VOF), connecting the inferior parietal with the lower temporal and occipital lobe, and a novel temporo-parietal (TP) connection, interconnecting the inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, and inferior occipital lobe with the superior parietal lobe. These studies were complemented by fiber dissection techniques. It is the first study that demonstrated the trajectory and connectivity of the VOF using fiber dissection, as well as displayed the spatial relationship of the SLF-V with the cortex and the adjacent fiber bundles on one dissecting hemisphere. By providing a more accurate and detailed description of the local connectivity of the TPO junction, our findings help to develop new insights into its functional role in the human brain. 10.1016/j.brainres.2016.05.046
The geometric structure of the brain fiber pathways. Wedeen Van J,Rosene Douglas L,Wang Ruopeng,Dai Guangping,Mortazavi Farzad,Hagmann Patric,Kaas Jon H,Tseng Wen-Yih I Science (New York, N.Y.) The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution. 10.1126/science.1215280
Mapping the structural core of human cerebral cortex. PLoS biology Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration. 10.1371/journal.pbio.0060159
Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Wedeen Van J,Hagmann Patric,Tseng Wen-Yih Isaac,Reese Timothy G,Weisskoff Robert M Magnetic resonance in medicine Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed. 10.1002/mrm.20642
Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Wedeen V J,Wang R P,Schmahmann J D,Benner T,Tseng W Y I,Dai G,Pandya D N,Hagmann P,D'Arceuil H,de Crespigny A J NeuroImage MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy. 10.1016/j.neuroimage.2008.03.036