logo logo
Communication in tiny packages: Exosomes as means of tumor-stroma communication. Daßler-Plenker Juliane,Küttner Victoria,Egeblad Mikala Biochimica et biophysica acta. Reviews on cancer Tumor-derived exosomes are nano-sized vesicles acting as multi-signal devices influencing tumor growth at local and distant sites. Exosomes are derived from the endolysosomal compartment and can shuttle diverse biomolecules like nucleic acids (microRNAs and DNA fragments), lipids, proteins, and even pharmacological compounds from a donor cell to recipient cells. The transfer of cargo to recipient cells enables tumor-derived exosomes to influence diverse cellular functions like proliferation, cell survival, and migration in recipient cells, highlighting tumor-derived exosomes as important players in communication within the tumor microenvironment and at distant sites. In this review, we discuss the mechanisms associated with exosome biogenesis and cargo sorting. In addition, we highlight the communication of tumor-derived exosomes in the tumor microenvironment during different phases of tumor development, focusing on angiogenesis, immune escape mechanisms, drug resistance, and metastasis. 10.1016/j.bbcan.2020.188340
Publication Trends in Exosomes Nanoparticles for Cancer Detection. International journal of nanomedicine BACKGROUND:Exosomes are small vesicles produced by almost all cells in the body and found in all biofluids. Cancer cell-derived exosomes are known to have distinct, measurable signatures, applicable for early cancer diagnosis. Despite the present bibliometric studies on "Cancer detection" and "Nanoparticles", no single study exists to deal with "Exosome" bibliometric study. METHODS:This bibliometric work investigated the publication trends of "Exosomes" nanoparticles and its application in cancer detection, for the literature from 2008 to July 2019. The data were collected from the Web of Science Core Collection. There were variant visual maps generated to show annual publication, most- relevant authors, sources, countries, topics and keywords. The network analysis of these studies was investigated to evaluate the research trends in the field of exosomes. In addition, the data were qualitatively analyzed according to 22 top-cited articles, illustrating the frequently used subjects and methods in exosomes research area. RESULTS:The results showed that the documents in this field have improved the citation rate. The top-relevant papers are mostly published in Scientific Reports journal which has lost its popularity after 2017, while today, Analytical Chemistry is leading in publishing the most articles related to exosomes. The documents containing keywords of plasma, cells, cancer, biomarkers, and vesicles as keywords plus, are more likely to be published in PLoS One journal. The clustering of the keywords network showed that the keyword theme of "extracellular vesicles" has the highest centrality rate. In global research, USA is the most corresponding country, followed by China, Korea and Australia. Based on the qualitative analysis, the published documents with at least 50 citations have used exosome release, cargo, detection, purification and secretion, as their targets and applied cell culture or isolation as their methods. CONCLUSION:The bibliometric study on exosomes nanoparticles for cancer detection provides a clear vision of the future research direction and identifies the potential opportunities and challenges. This may lead new researchers to select the proper subfields in exosome-related research fields. 10.2147/IJN.S247210
A nature-inspired colorimetric and fluorescent dual-modal biosensor for exosomes detection. Xia Yaokun,Chen Tingting,Chen Guanyu,Weng Yunping,Zeng Lupeng,Liao Yijuan,Chen Wenqian,Lan Jianming,Zhang Jing,Chen Jinghua Talanta As non-invasive biomarkers, exosomes are of great significance to diseases diagnosis. However, sensitive and accurate detection of exosomes still remains technical challenges. Herein, inspired by nature's "one-to-many" concept, we design a biosensor mimicking the cactus with numerous thorns to detect exosomes. The biosensor is composed of CD63 antibodies, resembling the roots of cactus, to capture exosomes, and the exosomes resemble the stems. Cholesterol-labeled DNA (DNA anchor) binding to streptavidin modified horseradish peroxidase (HRP) can insert into exosomes membrane, which seems the thorns. The readout signal is produced through HRP-catalyzed hydrogen peroxide (HO) mediated oxidation of 1,4-phenylenediamine (PPD) to form 2,5-diamino-NN'-bis-(p-aminophenyl)-1,4-benzoquinone di-imine (PPDox). The PPDox can quench fluorescence of fluorescein through inner filter effect (IFE), which provides fluorescent signal for exosomes detection. Based on this principle, the obtained exosomes solution is qualitatively and quantitatively analyzed by our biosensor, with the comparison to current standard methods by nanoparticle tracking analysis (NTA) and commercial enzyme-linked immunosorbent assay (ELISA) kit. The linear range is from 1.0 × 10 to 5.0 × 10 particles μL with the limit of detection 3.40 × 10 particles μL and 3.12 × 10 particles μL for colorimetric and fluorescent assays, respectively. Meanwhile, our biosensor exhibits good selectivity, and can eliminate the interference from proteins. This dual-modal biosensor shows favorable performance towards analytical application in clinic samples, pushing one step further towards practical clinical use. 10.1016/j.talanta.2020.120851
[Prospects and challenges of exosomes as drug delivery systems]. Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi Exosomes are nanoscale vectors with a diameter of 30~100 nm secreted by living cells, and they are important media for intercellular communication. Recent studies have demonstrated that exosomes can not only serve as biomarkers for diagnosis, but also have great potential as natural drug delivery vectors. Exosomes can be loaded with therapeutic cargos, including small molecules, proteins, and oligonucleotides. Meanwhile, the unique biological compatibility, high stability, and tumor targeting of exosomes make them attractive in future tumor therapy. Though exosomes can effectively deliver bioactive materials to receptor cells, there is a wide gap between our current understanding of exosomes and their application as ideal drug delivery systems. In this review, we will briefly introduce the function and composition of exosomes, and mainly summarize the potential advantages and challenges of exosomes as drug carriers. Finally, this review is expected to provide new ideas for the development of exosome-based drug delivery systems. 10.7507/1001-5515.201810027