logo logo
High promoter sequence variation in subgroup 6 members of R2R3-MYB genes is involved in different floral anthocyanin color patterns in Lilium spp. Molecular genetics and genomics : MGG The spatially and temporally distinct expression of R2R3-MYB positive regulators is among the major mechanisms that create various anthocyanin color patterns in many flowers. However, we do not know how these positive regulators have gained different expression profiles. In the Asiatic hybrid lily 'Lollypop' (derived from the crosses of species belonging to Sinomartagon/Daurolirion section), MYB12 and MYB19S regulate the pigmentation at whole tepals and raised tepal spots, respectively. In the Oriental hybrid lily 'Sorbonne' (derived from the crosses of species belonging to the Archelirion section), MYB12 regulates both whole tepal and raised spot pigmentation. The genes have similar amino acid sequences with similar protein functions but exhibit different expression profiles in lily flowers. As promoters are among the most significant factors affecting gene expression profiles, their promoter sequences were determined in this study. The three genes had very different promoter sequences, and putative cis-regulatory elements were not conserved in numbers or order. To further confirm the promoter functions, tobacco plants were transformed with native promoter-driven MYB12 or MYB19S genes of 'Lollypop.' Expression levels of MYB12 were higher in corolla tubes than in lobes, while those of MYB19S were higher in corolla lobes than in tubes. Thus, the diverse promoter functions were likely to be the leading causes of their different expression profiles and generation of unique color patterns. Finally, the history of R2R3-MYB gene establishment during lily evolution was estimated using sequence data. 10.1007/s00438-021-01799-6
Repression of anthocyanin biosynthesis by R3-MYB transcription factors in lily (Lilium spp.). Plant cell reports KEY MESSAGE:Lily R3-MYB transcription factors are involved in negative regulation to limit anthocyanin accumulation in lily flowers and leaves and create notable color patterns on ectopically expressed petunia flowers. In eudicots, both positive and negative regulators act to precisely regulate the level of anthocyanin accumulation. The R3-MYB transcription factor is among the main factors repressing anthocyanin biosynthesis. Although, in monocots, the positive regulators have been well characterized, the negative regulators have not been examined. Two R3-MYBs, LhR3MYB1 and LhR3MYB2, which were identified in lily transcriptomes, were characterized in this study to understand the regulatory mechanisms of anthocyanin biosynthesis. LhR3MYB1 and LhR3MYB2 had a C2 suppressor motif downstream of a single MYB repeat; the similar amino acid motif appears only in AtMYBL2 among the eudicot R3-MYB proteins. Stable and transient overexpression of LhR3MYB1 and LhR3MYB2 in tobacco plants showed suppression of anthocyanin biosynthesis by both; however, suppression by LhR3MYB2 was stronger than that by LhR3MYB1. In the lily plant, the LhR3MYB2 transcript was detected in leaves with light stimulus-induced anthocyanin accumulation and in pink tepals. Although LhR3MYB1 was expressed in some, but not all tepals, its expression was not linked to anthocyanin accumulation. In addition, LhR3MYB1 expression levels in the leaves remained unchanged by the light stimulus, and LhR3MYB1 transcripts predominantly accumulated in the ovaries, which did not accumulate anthocyanins. Thus, although LhR3MYB1 and LhR3MYB2 have an ability to repress anthocyanin accumulation, LhR3MYB2 is more strongly involved in the negative regulation to limit the accumulation than that by LhR3MYB1. In addition, the overexpression of LhR3MYB2 generated notable color patterns in petunia flowers; thus, the usefulness of the LhR3MYB genes for creating unique color patterns by genetic engineering is discussed. 10.1007/s00299-019-02391-4
Isolation and identification of MYB transcription factors (MYB19Long and MYB19Short) involved in raised spot anthocyanin pigmentation in lilies (Lilium spp.). Yamagishi Masumi Journal of plant physiology Although anthocyanin color patterns on flowers are among the most attractive characteristics, the genetic mechanisms through which color patterns are developed are not well understood, especially for color patterns associated with altered petal structure. Lilium species and cultivars often develop raised spots, where the interior surfaces of tepals increase to develop bumps with accompanying anthocyanin accumulation. The aim of this study was to identify transcription factors regulating pigmentation of the bumps. We identified two R2R3-MYB genes, MYB19Long and MYB19Short, in Lilium leichtlinii, L. lancifolium, and Asiatic hybrid lily cultivars. Their amino acid sequences were similar; however, part of the C-terminal region was triplicated in MYB19Long. Spatial and temporal expression profiles in lilies were strongly associated with anthocyanin biosynthesis gene expression in the bumps, and some defects were found in these genes in L. lancifolium 'Pure Gold' that developed colorless bumps. Thus, both MYB19Long and MYB19Short were likely to be involved in the bump pigmentation. MYB19Long had a stronger ability to stimulate target gene expression than MYB19Short, and expression levels of MYB19Long were greater than those of MYB19Short in lily tepals; thus, the ability to biosynthesize anthocyanin pigments was greater for MYB19Long than for MYB19Short. Among the F population, MYB19Short expression was found only in the tepals of F plants that developed bumps, although all of the F plants possessed the MYB19Short gene, indicating that MYB19 expression followed bump development. These findings helped to elucidate the genetic mechanisms underlying raised spot development. 10.1016/j.jplph.2020.153164