logo logo
New insights into the role of EMT in tumor immune escape. Terry Stéphane,Savagner Pierre,Ortiz-Cuaran Sandra,Mahjoubi Linda,Saintigny Pierre,Thiery Jean-Paul,Chouaib Salem Molecular oncology Novel immunotherapy approaches have provided durable remission in a significant number of cancer patients with cancers previously considered rapidly lethal. Nonetheless, the high degree of nonresponders, and in some cases the emergence of resistance in patients who do initially respond, represents a significant challenge in the field of cancer immunotherapy. These issues prompt much more extensive studies to better understand how cancer cells escape immune surveillance and resist immune attacks. Here, we review the current knowledge of how cellular heterogeneity and plasticity could be involved in shaping the tumor microenvironment (TME) and in controlling antitumor immunity. Indeed, recent findings have led to increased interest in the mechanisms by which cancer cells undergoing epithelial-mesenchymal transition (EMT), or oscillating within the EMT spectrum, might contribute to immune escape through multiple routes. This includes shaping of the TME and decreased susceptibility to immune effector cells. Although much remains to be learned on the mechanisms at play, cancer cell clones with mesenchymal features emerging from the TME seem to be primed to face immune attacks by specialized killer cells of the immune system, the natural killer cells, and the cytotoxic T lymphocytes. Recent studies investigating patient tumors have suggested EMT as a candidate predictive marker to be explored for immunotherapy outcome. Promising data also exist on the potential utility of targeting these cancer cell populations to at least partly overcome such resistance. Research is now underway which may lead to considerable progress in optimization of treatments. 10.1002/1878-0261.12093
EMT in cancer. Brabletz Thomas,Kalluri Raghu,Nieto M Angela,Weinberg Robert A Nature reviews. Cancer Similar to embryonic development, changes in cell phenotypes defined as an epithelial to mesenchymal transition (EMT) have been shown to play a role in the tumorigenic process. Although the first description of EMT in cancer was in cell cultures, evidence for its role in vivo is now widely reported but also actively debated. Moreover, current research has exemplified just how complex this phenomenon is in cancer, leaving many exciting, open questions for researchers to answer in the future. With these points in mind, we asked four scientists for their opinions on the role of EMT in cancer and the challenges faced by scientists working in this fast-moving field. 10.1038/nrc.2017.118
Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Zhou Jiesi,Jain Saket,Azad Abul K,Xu Xia,Yu Hai Chuan,Xu Zhihua,Godbout Roseline,Fu YangXin Cellular signalling Epithelial-mesenchymal transition (EMT) plays a critical role in the progression of epithelial ovarian cancer (EOC). However, the mechanisms that regulate EMT in EOC are not fully understood. Here, we report that activation of Notch1 induces EMT in EOC cells as evidenced by downregulation of E-cadherin and cytokeratins, upregulation of Slug and Snail, as well as morphological changes. Interestingly, activation of Notch1 increases TGFβ/Smad signaling by upregulating the expression of TGFβ and TGFβ type 1 receptor. Time course experiments demonstrate that inhibition of Notch by DAPT (a γ-secretase inhibitor) decreases TGFβ-induced phosphorylation of receptor Smads at late, but not at early, timepoints. These results suggest that Notch activation plays a role in sustaining TGFβ/Smad signaling in EOC cells. Furthermore, inhibition of Notch by DAPT decreases TGFβ induction of Slug and repression of E-cadherin and knockdown of Notch1 decreases TGFβ-induced repression of E-cadherin, indicating that Notch is required, at least in part, for TGFβ-induced EMT in EOC cells. On the other hand, TGFβ treatment increases the expression of Notch ligand Jagged1 and Notch target gene HES1 in EOC cells. Functionally, the combination of Notch1 activation and TGFβ treatment is more potent in promoting motility and migration of EOC cells than either stimulation alone. Taken together, our results indicate that Notch and TGFβ form a reciprocal positive regulatory loop and cooperatively regulate EMT and promote EOC cell motility and migration. 10.1016/j.cellsig.2016.03.016
Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. Ricciardi M,Zanotto M,Malpeli G,Bassi G,Perbellini O,Chilosi M,Bifari F,Krampera M British journal of cancer BACKGROUND:Epithelial-to-mesenchymal transition (EMT) has a central role in cancer progression and metastatic dissemination and may be induced by local inflammation. We asked whether the inflammation-induced acquisition of mesenchymal phenotype by neoplastic epithelial cells is associated with the onset of mesenchymal stromal cell-like immune-regulatory properties that may enhance tumour immune escape. METHODS:Cell lines of lung adenocarcinoma (A549), breast cancer (MCF7) and hepatocellular carcinoma (HepG2) were co-cultured with T, B and NK cells before and after EMT induction by either the supernatant of mixed-lymphocyte reactions or inflammatory cytokines. RESULTS:EMT occurrence following inflammatory priming elicited multiple immune-regulatory effects in cancer cells resulting in NK and T-cell apoptosis, inhibition of lymphocyte proliferation and stimulation of regulatory T and B cells. Indoleamine 2,3-dioxygenase, but not Fas ligand pathway, was involved at least in part in these effects, as shown by the use of specific inhibitors. CONCLUSIONS:EMT induced by inflammatory stimuli confers to cancer cells some mesenchymal stromal cell-like immune-modulatory properties, which could be a cue for cancer progression and metastatic dissemination by favouring immune escape. 10.1038/bjc.2015.29
Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Jiang Yuanyuan,Zhan Hanxiang Cancer letters Immune checkpoint blockage has been considered a breakthrough in cancer treatment, achieving encouraging anti-tumor effects in some advanced solid malignancies. However, low response rate and therapeutic resistance represent significant challenges in this field. In addition to its typical role in embryonic development and tissue fibrosis, epithelial-mesenchymal transition (EMT) plays a pivotal role in tumor immunosuppression and immune evasion. Previous studies revealed that EMT is associated with activation of different immune checkpoint molecules, including PD-L1. EMT-induced immune escape promotes cancer progression and may also provide a platform for discovery of novel therapeutic approaches and predictive biomarkers for checkpoint inhibitor therapeutic response. Here, we summarize recent findings focused on EMT-induced immune suppression and evasion in the tumor microenvironment (TME). EMT transcription factors (EMT-TFs), immune cells, cell plasticity and their regulatory role in the immune response are thoroughly reviewed. Bidirectional regulation between EMT and PD-L1 signaling is discussed in terms of cancer immune escape and possible combined therapies. Additionally, we investigated the value of preclinical or clinical trials using EMT targeted therapy combined with PD-L1 inhibitors. This review may help to further understand the role of EMT and PD-L1 signaling in cancer immune evasion. Meanwhile, additional molecular mechanistic studies and clinical trials are urgently needed. 10.1016/j.canlet.2019.10.013
Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Liu Chia-Hung,Tang Wan-Chun,Sia Peik,Huang Chi-Chen,Yang Pei-Ming,Wu Ming-Heng,Lai I-Lu,Lee Kuen-Haur International journal of medical sciences BACKGROUND:Over 70% of cancer metastasis from prostate cancer develops bone metastases that are not sensitive to hormonal therapy, radiation therapy, or chemotherapy. The epithelial-to-mesenchymal transition (EMT) genetic program is implicated as a significant contributor to prostate cancer progression. As such, targeting the EMT represents an important therapeutic strategy for preventing or treating prostate cancer metastasis. Berberine is a natural alkaloid with significant antitumor activities against many types of cancer cells. In this study, we investigated the molecular mechanism by which berberine represses the metastatic potential of prostate cancer. METHODS:The effects of berberine on cell migration and invasion were determined by transwell migration assay and Matrigel invasion assay. Expressions of EMT-related genes were determined by an EMT PCR Array and a quantitative RT-PCR. The prognostic relevance of berberine's modulation of EMT-related genes in prostate cancer was evaluated using Kaplan-Meier survival analysis. RESULTS:Berberine exerted inhibitory effects on the migratory and invasive abilities of highly metastatic prostate cancer cells. These inhibitory effects of berberine resulted in significant repression of a panel of mesenchymal genes that regulate the developmental EMT. Among EMT-related genes downregulated by berberine, high BMP7, NODAL and Snail gene expressions of metastatic prostate cancer tissues were associated with shorter survival of prostate cancer patients and provide potential therapeutic interventions. CONCLUSIONS:We concluded that berberine should be developed as a pharmacological agent for use in combination with other anticancer drug for treating metastatic prostate cancer. 10.7150/ijms.9982
Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Wang Wen-Die,Shang Yue,Li Yi,Chen Shu-Zhen Acta pharmacologica Sinica Honokiol (HNK), an active compound isolated from traditional Chinese medicine Magnolia officinalis, has shown potent anticancer activities. In the present study, we investigated the effects of HNK on breast cancer metastasis in vitro and in vivo, as well as the underlying molecular mechanisms. We showed that HNK (10-70 μmol/L) dose-dependently inhibited the viability of human mammary epithelial tumor cell lines MCF7, MDA-MB-231, and mouse mammary tumor cell line 4T1. In the transwell and scratch migration assays, HNK (10, 20, 30 μmol/L) dose-dependently suppressed the invasion and migration of the breast cancer cells. We demonstrated that HNK (10-50 μmol/L) dose-dependently upregulated the epithelial marker E-cadherin and downregulated the mesenchymal markers such as Snail, Slug, and vimentin at the protein level in breast cancer cells. Using a puromycin incorporation assay, we showed that HNK decreased the Snail translation efficiency in the breast cancer cells. In a mouse model of tumor metastasis, administration of HNK (50 mg/kg every day, intraperitoneal (i.p.), 6 times per week for 30 days) significantly decreased the number of metastatic 4T1 cell-derived nodules and ameliorated the histological alterations in the lungs. In addition, HNK-treated mice showed decreased Snail expression and increased E-cadherin expression in metastatic nodules. In conclusion, HNK inhibits EMT in the breast cancer cells by downregulating Snail and Slug protein expression at the mRNA translation level. HNK has potential as an integrative medicine for combating breast cancer by targeting EMT. 10.1038/s41401-019-0240-x