加载中

    Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells. Sun Nianzi,Yang Lin,Zhang Qian,Zou Chengwei Iranian journal of basic medical sciences Objectives:Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury. Materials and Methods:A cellular injury model of OGD-treated H9c2 cells was constructed to simulate ischemic/reperfusion (I/R) injury. Then, various concentrations of pioglitazone (0, 2.5, 5, 7.5 and 10 μM) were used for the treatment of H9c2 cells, and CCK-8, flow cytometry and western blot assays were performed to examine cell viability, apoptosis, and the protein levels of factors involved in cell cycle and apoptosis in OGD-treated cells. MiR-454 inhibitor was used to suppress miR-454 expression, and whether miR-454 was involved in regulating OGD-induced cell injury was studied. Two key signal pathways were examined to uncover the underlying mechanism. Results:OGD reduced cell proliferation and induced apoptosis in H9c2 cells (<0.05, <0.01 or < 0.001). OGD-induced injury was significantly attenuated by pioglitazone at the concentration of 5 μM. Additionally, pioglitazone significantly up-regulated miR-454 expression in OGD-injured cells (< 0.05 or < 0.01). MiR-454 suppression declined the protective effect of pioglitazone on OGD-injured H9c2 cells (<0.05 or < 0.01). Besides, pioglitazone activated PI3K/AKT and ERK/MAPK pathways via up-regulating miR-454. Conclusion:Pioglitazone protected H9c2 cells against OGD-induced injury through up-regulating miR-454, indicating a novel therapeutic strategy for treatment of MIRI. 10.22038/IJBMS.2018.29223.7063
    Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway. Tu Yingfeng,Wan Lin,Fan Yuhua,Wang Kezheng,Bu Lihong,Huang Tao,Cheng Zhen,Shen Baozhong PloS one BACKGROUND:Ischemic postconditioning (IPost) protects the reperfused heart from infarction which has drawn much attention recently. However, studies to date have rarely investigated the role of microRNAs (miRNAs) in IPost. The aims of this study were to investigate whether miR-21 is involved in the protective effect of IPost against myocardial ischemia-reperfusion (I/R) injury and disclose the potential molecular mechanisms involved. METHODS AND RESULTS:We found that miR-21 was remarkably up-regulated in mouse hearts after IPost. To determine the protective role of IPost-induced miR-21 up-regulation, the mice were divided into the following four groups: I/R group; I/R+IPost group (I/R mice treated with IPost); Antagomir-21+IPost+I/R group (I/R mice treated with anagomir-21 and IPost); Scramble+IPost+I/R group (I/R mice treated with scramble and IPost). The results showed IPost could reduce I/R injury-induced infarct size of the left ventricle, improve cardiac function, and prevent myocardial apoptosis, while knockdown of miR-21 with antagomir-21 could reverse these protective effects of IPost against mouse I/R injury. Furthermore, we confirmed that miR-21 plays a protective role in myocardial apoptosis through PTEN/Akt signaling pathway, which was abrogated by the PI3K inhibitor LY294002. The protective effect of miR-21 on myocardial apoptosis was further revealed in mouse hearts after IPost treatment in vivo. CONCLUSIONS:Our data clearly demonstrate that miR-21 is involved in IPost-mediated cardiac protection against I/R injury and dysfunction through the PTEN/Akt signaling pathway in vivo. Identifying the beneficial roles of IPost-regulated miRNAs in cardiac protection, which may be a rational target selection for ischemic cardioprotection. 10.1371/journal.pone.0075872
    MicroRNA-93 inhibits ischemia-reperfusion induced cardiomyocyte apoptosis by targeting PTEN. Ke Zun-Ping,Xu Peng,Shi Yan,Gao Ai-Mei Oncotarget MicroRNAs have been implicated in some biological and pathological processes, including the myocardial ischemia/reperfusion (I/R) injury. Recent findings demonstrated that miR-93 might provide a potential cardioprotective effect on ischemic heart disease. This study was to investigate the role of miR-93 in I/R-induced cardiomyocyte injury and the potential mechanism. In this study, we found that hypoxia/reoxygenation (H/R) dramatically increased LDH release, MDA contents, ROS generation, and endoplasmic reticulum stress (ERS)-mediated cardiomyocyte apoptosis, which were attenuated by co-transfection with miR-93 mimic. Phosphatase and tensin homolog (PTEN) was identified as the target gene of miR-93. Furthermore, miR-93 mimic significantly increased p-Akt levels under H/R, which was partially released by LY294002. In addtion, Ad-miR-93 also attenuated myocardial I/R injury in vivo, manifested by reduced LDH and CK levels, infarct area and cell apoptosis. Taken together, our findings indicates that miR-93 could protect against I/R-induced cardiomyocyte apoptosis by inhibiting PI3K/AKT/PTEN signaling. 10.18632/oncotarget.8941
    Salvianolic acid B induced upregulation of miR-30a protects cardiac myocytes from ischemia/reperfusion injury. Li Dan,Wang Jun,Hou Jincai,Fu Jianhua,Liu Jianxun,Lin Ruichao BMC complementary and alternative medicine BACKGROUND:MicroRNAs (miRNAs) are a novel class of powerful, endogenous regulators of gene expression. This study was designed to ascertain if miR-30a is involved in the cardioprotective actions of salvianolic acid B (Sal B) against myocardial ischemia-reperfusion (I-R) injury through suppression of autophagy. METHODS:Murine myocardial cells that had undergone primary culture were induced by I-R and incubated with Sal B (25, 50, 100 μM) in the presence of a miR-30a mimic or miR-30a inhibitor. Expression of miR-30a, beclin-1, LC3-II and p-Akt protein, cell viability, and lactic acid dehydrogenase (LDH) release were assessed. RESULTS:miR-30a expression was down-regulated remarkably in I-R cells, and this suppression could be reversed by Sal B in a dose-dependent manner. Sal B repressed autophagy in I-R myocardial cells. Sal B improved cell viability and reduced the rate of LDH leakage, which suggested that autophagy suppression was beneficial for cell survival. Knockdown of miR-30a with a miR-30a inhibitor could reverse the anti-autophagy effect of Sal B against I-R injury. Furthermore, we confirmed that Sal B has a protective role in miR-30a-mediated autophagy through the PI3K/Akt signaling pathway, which was abrogated by the PI3K inhibitor LY294002. CONCLUSIONS:These data suggest that miR-30a is involved in Sal B-mediated cardioprotection against I-R injury through the PI3K/Akt signaling pathway. 10.1186/s12906-016-1275-x
    MicroRNA-384-5p/Beclin-1 As Potential Indicators For Epigallocatechin Gallate Against Cardiomyocytes Ischemia Reperfusion Injury By Inhibiting Autophagy Via PI3K/Akt Pathway. Zhang Chan,Liang Ronggan,Gan Xiaowen,Yang Xiufang,Chen LingLin,Jian Jie Drug design, development and therapy Background/Aims:Epigallocatechin gallate (EGCG) has established protective actions against myocardial ischemia/reperfusion (I/R) injury by regulating autophagy. However, little is known about the mechanisms of EGCG in posttranscriptional regulation in the process of cardioprotection. Here we studied whether microRNAs play a role in EGCG-induced cardioprotection. Methods:The myocardial I/R injury in vitro and in vivo model were made, with or without EGCG pretreatment. The upregulation and silencing of microRNA-384-5p (miR-384) and Beclin-1 in H9c2 cell lines were established. Rats were transfected with miR-384 specific shRNA. Dual-luciferase reporter gene assay was conducted to verify the relationship between miR-384 and Beclin-1. TTC staining was performed to analyze the area of myocardial infarct size. Cell viability was monitored by cell counting kit-8 (CCK-8). The release of cardiac troponin-I (cTnI) was examined by ELISA. The levels of autophagy-related genes or proteins expression were evaluated by qRT-PCR or Western blotting. Autophagosomes of myocardial cells were detected by transmission electron microscopy and laser scanning confocal microscope. Results:I/R increased both autophagosomes and autolysosomes, thereby increasing autophagic flux both in vitro and in vivo. Pretreatment with EGCG attenuated I/R-induced autophagic flux expression, accompanied by an increase in cell viability and a decrease in the size of myocardial infarction. MiR-384 expression was down-regulated in H9c2 cell lines when subjected to I/R, while this suppression could be reversed by EGCG pretreatment. The dual-luciferase assay verified that Beclin-1 was a target of miR-384. Both overexpression of miR-384 and knocking down of Beclin-1 significantly inhibited I/R-induced autophagy, accompanied by the activation of PI3K/Akt pathway, thus enhanced the protective effect of EGCG. However, these functions were abrogated by the PI3K inhibitor, LY294002. Conclusion:We confirmed that EGCG has a protective role in microRNA-384-mediated autophagy by targeting Beclin-1 via activating the PI3K/Akt signaling pathway. Our results unveiled a novel role of EGCG in myocardial protection, involving posttranscriptional regulation with miRNA-384. 10.2147/DDDT.S219074
    Inhibition of miR-181b-5p protects cardiomyocytes against ischemia/reperfusion injury by targeting AKT3 and PI3KR3. Yuan Limei,Fan Lihua,Li Qinghai,Cui Wei,Wang Xuechen,Zhang Zhiguo Journal of cellular biochemistry Ischemic heart disease (IHD) is the most occurring cardiovascular-associated disease, which is a primary leading cause of cardiac disability and death worldwide. Myocardial ischemia/reperfusion injury (MI/RI) has been linked to IHD-induced cardiomyocytes apoptosis and tissue damage. The clinical studies have indicated that pathophysiologic mechanisms of MI/RI are associated with reactive oxygen species generation, calcium overload, energy metabolism disorder, neutrophil infiltration, and others. However, the genetic mechanism of MI/RI remains unclear. In this study, we successfully established the reproducing abnormal heart observed in rat, of IHD-induced MI/RI post operation. By using these rats, we illustrated that expression of miR-181b-5p was increased not only in both hypoxia/reoxygenation-cultured H9C2 but also heart of myocardial ischemia/reperfusion (MI/R) rat. Suppression of the miR-181b-5p cardiomyocytes apoptosis and rescued myocardial infarction. Additionally, our data indicated that miR-181b-5p negatively regulates the expression of AKT3 and PIK3R3 through directly binding with its 3'-untranslated region. More importantly, suppression of miR-181b-5p protects the cardiomyocytes apoptosis and tissue damage from MI/R via regulation of PIK3R3 and AKT3. Hence, our study indicates that miR-181b-5p is essential for MI/RI via regulation of PI3K/Akt signaling pathway and could be a potential therapeutic target in IHD. 10.1002/jcb.29271
    Inhibition of MiR-122 Decreases Cerebral Ischemia-reperfusion Injury by Upregulating DJ-1-Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN)/Phosphonosinol-3 Kinase (PI3K)/AKT. Xue XinHong,Wang HongRu,Su JiangLi Medical science monitor : international medical journal of experimental and clinical research BACKGROUND Ischemia-reperfusion injury is caused by a blood reperfusion injury in ischemic brain tissue, and usually occurs in the treatment stage of ischemic disease, which can aggravate brain tissue injury. MiR-122 is closely related to ischemia-reperfusion injury in the myocardium, kidney, and liver; however, the role in cerebral ischemia-reperfusion injury has not been established. MATERIAL AND METHODS In this study, cerebral ischemia-reperfusion injury was established in a rat model, and the control group was a sham-operated group. After ischemia-reperfusion injury for 6, 12, and 24 hours, brain tissue specimens were collected and the expression of miR-122 and DJ-1 were determined using quantitative real-time polymerase chain reaction. Flow cytometry was used to determine the reactive oxygen species (ROS) content. The modified Neurological Severity Score (mNSS) scale was used to evaluate the sensory and motor function defects of the rats. The malondialdehyde (MDA), superoxide dismutase (SOD), and enzyme activity were determined. The rats in the cerebral ischemia-reperfusion injury model were divided into 2 groups (antagomir-NC group and antagomir miR-122 group). Brain neuron RN-c cells were divided into the following 4 groups: antagomir-NC, antagomir miR-122, pIRES2-blank, and pIRES2-DJ-1. Seventy-two hours after transfection, ischemia-reperfusion treatment was carried out and conventional cultured RN-c cells were used as the control group. Flow cytometry was used to detect apoptosis and western blot was used to detect the expression of DJ-1, PTEN, AKT, and p-AKT. RESULTS The expression of miR-122 increased significantly in the process of ischemia-reperfusion damage after cerebral infarction, while the expression of DJ-1 decreased significantly. Downregulation of miR-122 significantly increased the expression of DJ-1, enhanced the activity of the PTEN/PI3K/AKT pathway, reduced cell apoptosis, and alleviated cerebral ischemia-reperfusion injury. CONCLUSIONS Inhibition of miR-122 can decrease cerebral ischemia-reperfusion injury by upregulating DJ-1-PTEN/PI3K/AKT pathway. 10.12659/MSM.915825
    Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway. Li Qiang,Shen Li,Wang Zhen,Jiang Hai-Peng,Liu Li-Xia Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie OBJECTIVE:To determine the mechanism by which Tanshinone IIA (Tan IIA) relieves myocardial ischemia reperfusion injury (MIRI) in rats via the PI3K/Akt/mTOR signaling pathway. METHODS:Sprague-Dawley (SD) rats received an intravenous injection of Tan IIA and LY294002 and were divided into the sham, control (myocardial ischemia reperfusion), Tan-L (low-dose Tan IIA), Tan-H (high-dose Tan IIA), Tan-L+LY (low-dose Tan IIA+LY294002), Tan-H+LY (high-dose Tan IIA+LY294002) and LY (LY294002) groups. Cardiomyocytes obtained from neonatal rats were treated with hypoxia reoxygenatin, Tan IIA and LY294002 and divided into the blank, control, Tan-L, Tan-H, Tan-L+LY, Tan-H+LY and LY groups. Creatine kinase MB isoenzyme (CK-MB) and lactic dehydrogenase (LDH) levels in serum and cardiomyocytes were measured. Area of necrosis/area at risk (AN/AAR) was determined with double staining of TTC and Evan's blue; viability and apoptosis of cardiomyocytes with MTT and TUNEL assays; SOD, MDA, HO, SDH and COX levels in heart mitochondria together with PI3K/Akt/mTOR and eNOS expressions and phosphorylation with Western blotting. RESULTS:The Tan-L and Tan-H groups showed a remarkable decrease in AN/AAR, serum CK-MB and LDH, mitochondrial MDA and HO levels but an increase in SOD activity, SDH and COX levels compared with the control group. However, compared with the Tan-L and Tan-H groups, the Tan-L+LY, Tan-H+LY and LY groups indicated an inverse tendency of those indicators. As shown by MTT and TUNEL, the control group had more severe cell damage than the blank group. Furthermore, cell damage and apoptosis were less severe in the Tan-L and Tan-H groups than in the control group, while the Tan-L+LY, Tan-H+LY and LY groups showed an opposite tendency when compared with the Tan-L and Tan-H groups. Meanwhile, the Tan-L and Tan-H groups showed significantly higher expression levels of PI3K, p-Akt/Akt, mTOR and p-eNOS/eNOS than the control group, whereas the Tan-L+LY, Tan-H+LY and LY groups had lower expression levels than the Tan-L and Tan-H groups. CONCLUSION:Our study provided evidence that Tan IIA could activate the PI3K/Akt/mTOR signaling pathway to relieve MIRI in rats. 10.1016/j.biopha.2016.09.014
    6-Gingerol Protects Heart by Suppressing Myocardial Ischemia/Reperfusion Induced Inflammation via the PI3K/Akt-Dependent Mechanism in Rats. Xu Tongtong,Qin Guowei,Jiang Wei,Zhao Ying,Xu Yongnan,Lv Xiangwei Evidence-based complementary and alternative medicine : eCAM Our previous study has demonstrated that 6-Gingerol (6-G) could alleviate myocardial ischemia/reperfusion injury (MIRI). However, the molecular mechanism underlying the process of myocardial ischemia/reperfusion (I/R) injury alleviation by 6-G remains unelucidated. The objective of the present study is to further investigate the potential mechanism for 6-G to alleviate MIRI in rats. Thirty-two Sprague-Dawley rats were randomly divided into four groups: the Sham group, the I/R group, the 6-G + I/R group, and the LY294002 (LY) + 6-G + I/R group. For the rats in each of the groups, data were collected for cardiogram, cardiac function, area of myocardial infarction, myocardial pathology, myocardial enzyme, marker of inflammatory response, and PI3K/Akt signaling pathway. We found that the pretreatment of 6-G with 6 mg/kg could shrink the ST section of cardiogram, improve the cardiac function, reduce the area of myocardial infarction and the degree of cardiac pathological injury, lower the level of myocardial enzyme, and inhibit the inflammatory response. In addition, our results also indicated that 6-G could upregulate the expression of PI3K and p-Akt and that LY294002, a blocking agent of PI3K/Akt signaling pathway, could nullify the protecting role of 6-G. Our experimental results showed that 6-G could inhibit I/R-induced inflammatory response through the activation of the PI3K/Akt signaling pathway. 10.1155/2018/6209679
    miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Xing Xiaowei,Guo Shuang,Zhang Guanghao,Liu Yusheng,Bi Shaojie,Wang Xin,Lu Qinghua Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas Reperfusion strategies in acute myocardial infarction (AMI) can cause a series of additional clinical damage, defined as myocardial ischemia/reperfusion (I/R) injury, and thus there is a need for effective therapeutic methods to attenuate I/R injury. miR-26a-5p has been proven to be an essential regulator for biological processes in different cell types. Nevertheless, the role of miR-26a-5p in myocardial I/R injury has not yet been reported. We established an I/R injury model in vitro and in vivo. In vitro, we used cardiomyocytes to simulate I/R injury using hypoxia/reoxygenation (H/R) assay. In vivo, we used C57BL/6 mice to construct I/R injury model. The infarct area was examined by TTC staining. The level of miR-26a-5p and PTEN was determined by bioinformatics methods, qRT-PCR, and western blot. In addition, the viability and apoptosis of cardiomyocytes were separately detected by MTT and flow cytometry. The targeting relationship between miR-26a-5p and PTEN was analyzed by the TargetScan website and luciferase reporter assay. I/R and H/R treatment induced myocardial tissue injury and cardiomyocyte apoptosis, respectively. The results showed that miR-26a-5p was down-regulated in myocardial I/R injury. PTEN was found to be a direct target of miR-26a-5p. Furthermore, miR-26a-5p effectively improved viability and inhibited apoptosis in cardiomyocytes upon I/R injury by inhibiting PTEN expression to activate the PI3K/AKT signaling pathway. miR-26a-5p could protect cardiomyocytes against I/R injury by regulating the PTEN/PI3K/AKT pathway, which offers a potential approach for myocardial I/R injury treatment. 10.1590/1414-431X20199106
    HMGB1 Protects the Heart Against Ischemia-Reperfusion Injury via PI3K/AkT Pathway-Mediated Upregulation of VEGF Expression. Zhou Yan-Hong,Han Qian-Feng,Gao Lei,Sun Ying,Tang Zhan-Wei,Wang Meng,Wang Wei,Yao Heng-Chen Frontiers in physiology Delivery of exogenous high mobility group box 1 (HMGB1) may exert a beneficial effect on myocardial ischemia-reperfusion (I/R) injury. Since the expression of vascular endothelial growth factor (VEGF) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) in the myocardium mediates the cardioprotective function of basic fibroblast growth factor, we hypothesized that VEGF and the PI3K/Akt signaling pathway also mediate the protective effects of intravenously delivered HMGB1. Thus, the objective of the present study was to analyze the impact of intravenous administration of HMGB1 on the myocardial expression of VEGF, myocardial fibrosis, and cardiac function in rats subjected to acute myocardial I/R. The ischemia was induced by ligation of the left anterior descending coronary artery for 30 min and was followed by 3 h of reperfusion. Myocardial malondialdehyde content, infarct size, and collagen volume fraction decreased, while the activity of superoxide dismutase was increased, the expression of VEGF and p-Akt was upregulated, and cardiac function was improved in the HMGB1-treated group when compared with rats subjected to I/R only (all < 0.05). However, these effects of HMGB1 were abolished by LY294002. The obtained results demonstrate that the cardioprotective effects of intravenous administration of HMGB1 prior to I/R may be mediated by upregulation of myocardial expression of VEGF, which may activate the PI3K/Akt signaling pathway. 10.3389/fphys.2019.01595
    Hyperbaric Oxygen Preconditioning Attenuates Myocardium Ischemia-Reperfusion Injury Through Upregulation of Heme Oxygenase 1 Expression: PI3K/Akt/Nrf2 Pathway Involved. Yin Xuesong,Wang Xiaofeng,Fan Zhixin,Peng Chenghai,Ren Zhongqiao,Huang Le,Liu Zhuang,Zhao Kan Journal of cardiovascular pharmacology and therapeutics BACKGROUND:With the rise of the burden of ischemic heart disease, both clinical and economic evidence show a desperate need to protect the heart against myocardium ischemia-reperfusion injury-related complications following cardiac surgery or percutaneous coronary intervention. However, there is no effective intervention for myocardium ischemia-reperfusion injury as yet. METHODS:We pretreated mice with 4 daily 2.0 absolute atmosphere (ATA) hyperbaric oxygen, then observed its effects on heart function parameters and infarct size following in situ ischemia-reperfusion. Multiple oxidative and inflammation products were measured in the myocardium. Next, we investigated the expression of heme oxygenase 1 (HO-1), phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (Akt) pathway, and NF-E2-related factor 2 (Nrf2) in the presence of myocardium ischemia-reperfusion injury, hyperbaric oxygen preconditioning, and their inhibitors and their effects on heart function parameters. RESULTS:Hyperbaric oxygen preconditioning ameliorated the cardiac function and histological alterations induced by myocardium ischemia-reperfusion injury, decreased oxidative products and proinflammatory cytokine. Hyperbaric oxygen preconditioning increased expression of HO-1, which was suppressed by PI3K inhibitor LY294002, Nrf2 knockout, and Akt inhibitor triciribine. The expression of Nrf2 was enhanced by hyperbaric oxygen preconditioning, but decreased by LY294002 and triciribine. The Akt was also activated by hyperbaric oxygen preconditioning but suppressed by LY294002. The hemodynamic assays showed that cardiac function was suppressed by LY294002, Nrf2 knockout, and triciribine. CONCLUSION:These data present a novel signaling mechanism by which hyperbaric oxygen preconditioning protects myocardium ischemia-reperfusion injury via PI3K/Akt/Nrf2-dependent antioxidant defensive system. 10.1177/1074248414568196
    The role of microRNA-1 targeting of MAPK3 in myocardial ischemia-reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway. Hao Yun-Ling,Fang Hong-Cheng,Zhao Hong-Lei,Li Xiao-Li,Luo Ying,Wu Bao-Quan,Fu Ming-Jie,Liu Wei,Liang Jin-Jie,Chen Xie-Hui American journal of physiology. Cell physiology Recent studies have uncovered the vital roles played by microRNAs in regulating cardiac injury. Among them, the cardiac enriched microRNA-1 (miR-1) has been extensively studied and proven to be detrimental to cardiac myocytes. Hence, the current study aimed to explore whether miR-1 affects myocardial ischemia-reperfusion injury (MIRI) in rats undergoing sevoflurane preconditioning and the underlying mechanism. After successful model establishment, rats with MIRI were transfected with mimics or inhibitors of miR-1, or siRNA against MAPK3, and then were injected with sevoflurane. A luciferase reporter gene assay was conducted to evaluate the targeting relationship between miR-1 and MAPK3. Reverse transcription quantitative polymerase chain reaction and Western blot analysis were employed to evaluate the expressions of miR-1, MAPK3, phosphatidylinositol 3-kinase (PI3K), and Akt. Additionally, the concentration of lactate dehydrogenase (LDH) was determined. Cell apoptosis and viability were assessed using TUNEL and cell counting kit-8 assays, and the ischemic area at risk and infarct size were detected using Evans blue and triphenyltetrazolium chloride staining. MAPK3 was found to be the target gene of miR-1. miR-1 expressed at a high level whereas MAPK3 expressed at a low level in MIRI rats. Overexpressing miR-1 or silencing MAPK3 blocked the PI3K/Akt pathway to increase cell apoptosis, ischemic area at risk, and infarct area but decreased cell viability and increased LDH concentration. In contrast, miR-1 downregulation abrogated the effects induced by miR-1 mimics or siRNA against MAPK3. These findings indicate that inhibition of miR-1 promotes MAPK3 to protect against MIRI in rats undergoing sevoflurane preconditioning through activation of the PI3K/Akt pathway. 10.1152/ajpcell.00310.2017
    Bisoprolol, a β antagonist, protects myocardial cells from ischemia-reperfusion injury via PI3K/AKT/GSK3β pathway. Wang Jing,Liu Jing,Xie Liang,Cai Xiaomin,Ma Xiaohua,Gong Jianbin Fundamental & clinical pharmacology The aim of this work was to explore whether bisoprolol plays a protective role in cardiomyocytes against ischemia-reperfusion injury via PI3K/AKT/ GSK3β pathway. We pretreated male Sprague Dawley (SD) rats with bisoprolol by oral administration prior to 0.5 h ischemia/4 h reperfusion. Myocardial infarct size and serum levels of cTnI and CK-MB were measured. In vitro, H9c2 cells were treated with hypoxia and reoxygenation, followed by measurement of cell viability, apoptosis, ROS production, cytometry, activities of AKT, GSK3β, and p-38 in the presence and absence of GSK3β siRNA. We found that bisoprolol reduced infarct size from 44% in I/R group to 31% in treated group (P < 0.05). The levels of cTnI and CK-MB were decreased from 286 ± 7 pg/mL and 32.2 ± 2 ng/mL in I/R group to 196 ± 2 pg/mL and 19.6 ± 0.9 ng/mL in the treated group, respectively (P < 0.05). Bisoprolol also increased cell viability while decreased apoptosis and ROS production in the treatment of hypoxia/ reoxygenation. Furthermore, bisoprolol increased AKT and GSK3β phosphorylation, an effect that was immediately eliminated by LY294002. GSK3β-specific siRNA experiment further confirmed that bisoprolol protected the myocardium against hypoxia/reoxygenation-induced injury via suppressing GSK3β activity. In conclusion, bisoprolol protected myocardium against ischemia-reperfusion injury via the PI3K/AKT/ GSK3β pathway. 10.1111/fcp.12562
    Paraoxonase 2 protects against acute myocardial ischemia-reperfusion injury by modulating mitochondrial function and oxidative stress via the PI3K/Akt/GSK-3β RISK pathway. Sulaiman Dawoud,Li Jingyuan,Devarajan Asokan,Cunningham Christine Marie,Li Min,Fishbein Gregory A,Fogelman Alan M,Eghbali Mansoureh,Reddy Srinivasa T Journal of molecular and cellular cardiology OBJECTIVE:To investigate the novel role of Paraoxonase 2 (PON2) in modulating acute myocardial ischemia-reperfusion injury (IRI). APPROACH:IRI was induced both in vivo and ex vivo in male, C57BL6/J (WT) and PON2-deficient (PON-def) mice. In addition, in vitro hypoxia-reoxygenation injury (HRI) was induced in H9c2 cells expressing empty vector (H9c2-EV) or human PON2 (H9c2-hPON2) ± LY294002 (a potent PI3K inhibitor). Infarct size, PON2 gene expression, mitochondrial calcium retention capacity (CRC), reactive oxygen species (ROS) generation, mitochondrial membrane potential, CHOP and pGSK-3β protein levels, and cell apoptosis were evaluated. RESULTS:PON2 gene expression is upregulated in WT mice following in vivo IRI. PON2-def mice exhibit a 2-fold larger infarct, increased CHOP levels, and reduced pGSK-3β levels compared to WT controls. Global cardiac mitochondria isolated from PON2-def mice exhibit reduced CRC and increased ROS production. Cardiomyocytes isolated from PON2-def mice subjected to ex vivo IRI have mitochondria with reduced CRC (also seen under non-IRI conditions), and increased ROS generation and apoptosis compared to WT controls. PON2 knockdown in H9c2 cells subjected to HRI leads to an increase in mitochondrial membrane depolarization. H9c2-hPON2 cells exhibit i) improvement in mitochondrial membrane potential, pGSK-3β levels and mitochondrial CRC, and ii) decrease in CHOP levels, mitochondrial ROS generation and cell apoptosis, when compared to H9c2-EV controls. Treatment with LY294002 resulted in a decrease of mitochondrial CRC and increase in mitochondrial ROS production and cell apoptosis in the H9c2-hPON2 group versus H9c2-EV controls. CONCLUSION:PON2 protects against acute myocardial IRI by reducing mitochondrial dysfunction and oxidative stress in cardiomyocytes via activation of the PI3K/Akt/GSK-3β RISK pathway. 10.1016/j.yjmcc.2019.02.008
    MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. Zhang Dong-Ying,Wang Bing-Jian,Ma Min,Yu Kun,Zhang Qing,Zhang Xi-Wen BMC molecular biology BACKGROUND:Receptor-interacting serine-threonine kinase 3 (RIPK3)-mediated necroptosis has been implicated in the progression of myocardial infarction (MI), but the underlying mechanisms, particularly whether microRNAs (miRNAs) are involved, remain largely unknown. RESULTS:A microarray analysis was used to screen for miR-325-3p expression in myocardial tissues from MI mice, and the expression was confirmed with qRT-PCR. The levels of myocardial enzymes were measured using commercial kits, and an echocardiography system was utilized for the detection of cardiac function parameters. The pathological features and infarction sizes of cardiac tissues were examined using H&E, TCC and Masson's trichrome staining, and the amount of cell apoptosis was determined using an in situ TUNEL assay. Cardiomyocytes were isolated and then subjected to hypoxia induction in vitro. The expression of the RIPK1, RIPK3 and phosphorylated MLKL (p-MLKL) proteins was measured using a Western blot. The mouse cardiomyocyte cell viability was analyzed by an MTT assay. The mRNA target of miR-325-3p was predicted using TargetScan v7.2 and then validated using a dual-luciferase reporter assay. The overexpression of miR-325-3p evidently decreased the expression levels of lactate dehydrogenase (LDH), phosphocreatine kinase (CK), superoxide dismutase (SOD) and malondialdehyde (MDA), inhibited left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD), and promoted left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVES). In addition, miR-325-3p overexpression attenuated the degree of injury to the cardiac tissue, decreased the infarct sizes and downregulated the expression of the necrosis-related proteins RIPK1, RIPK3 and p-MLKL. CONCLUSIONS:The RIPK1/RIPK3/p-MLKL axis-induced necroptosis that occurred during MI was mediated by a miRNA module, miR-325-3p, which can effectively ameliorate the symptoms of MI by suppressing the expression of RIPK3. 10.1186/s12867-019-0133-z
    Resveratrol protects myocardial apoptosis induced by ischemia-reperfusion in rats with acute myocardial infarction via blocking P13K/Akt/e-NOS pathway. Zhang X,Huang L-F,Hua L,Feng H-K,Shen B European review for medical and pharmacological sciences OBJECTIVE:To elucidate the protective role of resveratrol (RSV) in myocardial apoptosis induced by ischemia-reperfusion injury in rats with acute myocardial infarction (AMI), and to explore its underlying mechanism. MATERIALS AND METHODS:The AMI rat model was successfully established by ligation of the left anterior descending coronary artery. Rat cardiomyocytes were isolated and cultured. Cells were divided into four groups, including: control group (no specific treatment), AMI group (acute ischemia-reperfusion treatment), AMI+RSV group (RSV pretreatment for 24 h before acute ischemia-reperfusion) and AMI+ RSV+LY group (RSV pretreatment combined with 40 μmol/L phosphatidylinositide 3-kinases (PI3K) pathway inhibitor LY294002 for 24 h before acute ischemia-reperfusion). Morphology of apoptotic cardiomyocytes in each group was observed by Hoechst staining. The proliferation, apoptosis and cell cycle progression of cardiomyocytes were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay, terminal dexynucleotidyl transferase(TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry, respectively. Finally, the protein levels of genes relative to PI3K/Akt/eNOS pathway were detected by Western blot. RESULTS:Hoechst staining showed a large number of necrotic cells, cell retraction, enhanced refractive index and enlarged cell gap in AMI group. A small number of necrotic cells were found in AMI+RSV group, which was significantly fewer than that of AMI group. Meanwhile, remaining cells presented normal morphology. However, a great number of necrotic cells were observed in AMI+RSV+LY group, which was obviously more than that of AMI+RSV group. Compared with control group, cells in AMI group showed significantly decreased proliferative rate, increased early phase, late phase and total one of apoptosis. In AMI group, the ratio of G0/G1 phase was remarkably increased, whereas those of S and G2/M phases were decreased. Moreover, the expression levels of phosphorylated Akt (p-Akt) and phosphorylated e-NOS (p-eNOS) were significantly downregulated in AMI group. In AMI+RSV group, cell apoptosis, cell cycle progression and levels of p-Akt and p-eNOS showed the opposite trends as those of AMI group. However, LY294002 pretreatment reversed the protective role of RSV in cellular behaviors of cardiomyocytes. CONCLUSIONS:RSV protects cardiomyocyte apoptosis from ischemia-reperfusion injury through regulating phosphorylation levels of proteins relative to PI3K/Akt/e-NOS pathway. 10.26355/eurrev_201902_17142
    JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A intervention. Chen Qiuping,Xu Tongda,Li Dongye,Pan Defeng,Wu Pei,Luo Yuanyuan,Ma Yanfeng,Liu Yang American journal of translational research Recent studies have demonstrated that diabetes impairs the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway, while insulin resistance syndrome has been associated with alterations of this pathway in diabetic rats after ischemia/reperfusion (I/R), and activation of C-jun N-terminal kinase (JNK) is involved. The present study was designed to investigate whether inhibiting JNK activity would partially restore the PI3K/Akt signaling pathway and protect against myocardial I/R injury in diabetic rats, and to explore the effect of intervention with salvianolic acid A (Sal A). The inhibitor of JNK (SP600125) and Sal A were used in type 2 diabetic (T2D) rats, outcome measures included heart hemodynamic data, myocardial infarct size, the release of lactate dehydrogenase (LDH), SERCA2a activity, cardiomyocyte apotosis, expression levels of Bcl-2, Bax and cleaved caspase-3, and the phosphorylation status of Akt and JNK. The p-Akt levels were increased after myocardial I/R in non-diabetic rats, while there was no change in diabetic rats. Pretreatment with the SP600125 and Sal A decreased the p-JNK levels and increased the p-Akt levels in diabetic rats with I/R, and heart hemodynamic data improved, infarct size and LDH release decreased, SERCA2a activity increased, Bax and cleaved caspase-3 expression levels decreased, and the expression of Bcl-2 and the Bcl-2/Bax ratio increased. Our results suggest that the JNK/PI3K/Akt signaling pathway is involved in myocardial I/R injury in diabetic rats and Sal A exerts an anti-apoptotic effect and improves cardiac function following I/R injury through the JNK/PI3K/Akt signaling pathway in this model.
    Dexmedetomidine pretreatment protects the heart against apoptosis in ischemia/reperfusion injury in diabetic rats by activating PI3K/Akt signaling in vivo and in vitro. Chang Jian-Hua,Jin Mei-Mei,Liu Jun-Tian Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie Dexmedetomidine (DEX) exerts cardioprotection against ischemia/reperfusion injury. However, the precise mechanisms underlying this cardioprotective effect in diabetic rats are still not fully understood. The aim of the present study was to investigate the cardioprotective mechanism of DEX pretreatment on myocardial ischemia/reperfusion (I/R) injury in diabetic rats. A total of 25 streptozotocin-induced diabetic rats were equally randomized into five groups: i) Sham, ii) DEX (100 μg/kg); iii) myocardial I/R; iv) myocardial I/R+DEX (10 μg/kg); and v) myocardial I/R+DEX (100 μg/kg) groups. Primary cardiomyocytes were cultured in DEX for 1 h, and then oxygen and glucose deprivation (OGD)/R for 36 h. These results showed that pretreatment with DEX significantly decreased the I/R-induced size of the myocardial infarction, structural damage, morphological changes and apoptosis in myocardial cells, as well as levels of creatinine kinase, malondialdehyde and cardiac troponin I, and increased the I/R-induced superoxide dismutase activity in vivo and in vitro. Furthermore, immunohistochemical staining and western blot analysis revealed that DEX pretreatment significantly increased the I/R-induced expression levels of B-cell lymphoma 2 (Bcl-2), phosphorylated phosphoinositide 3-kinase (pPI3K) and pAkt, and significantly decreased those of pBcl-2 associated agonist of cell death, Bcl-2-associated X protein and cleaved caspase 3 in vivo and in vitro. In addition, all of these cardioprotective effects of DEX were reversed by yohimbine and LY294002 pretreatment. These results suggested that DEX pretreatment may activate the PI3K/Akt signaling pathway in an α adrenoceptor-dependent manner. DEX pretreatment may exert cardioprotective effects against myocardial ischemia/reperfusion injury in diabetic rats through the I/R-induced inhibition of cell apoptosis by activating the PI3K/Akt signaling pathway. 10.1016/j.biopha.2020.110188
    Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Zhang Jing,Wang Chen,Yu Shuchun,Luo Zhenzhong,Chen Yong,Liu Qin,Hua Fuzhou,Xu Guohai,Yu Peng Scientific reports Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway plays a key role in myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin (mTOR), a downstream target of PI3K/AKT signaling, is necessary and sufficient to protect the heart from I/R injury. Inhaled anesthetic sevoflurane is widely used in cardiac surgeries because its induction and recovery are faster and smoother than other inhaled anesthetics. Sevoflurane proved capable of inducing postconditioning effects in the myocardium. However, the underlying molecular mechanisms for sevoflurane-induced postconditioning (SPC) were largely unclear. In the present study, we demonstrated that SPC protects myocardium from I/R injury with narrowed cardiac infarct focus, increased ATP content, and decreased cardiomyocyte apoptosis, which are mainly due to the activation of PI3K/AKT/mTOR signaling and the protection of mitochondrial energy metabolism. Application of dactolisib (BEZ235), a PI3K/mTOR dual inhibitor, abolishes the up-regulation of pho-AKT, pho-GSK, pho-mTOR, and pho-p70s6k induced by SPC, hence abrogating the anti-apoptotic effect of sevoflurane and reducing SPC-mediated protection of heart from I/R injury. As such, this study proved that PI3K/AKT/mTOR pathway plays an important role in SPC induced cardiac protection against I/R injury. 10.1038/srep07317