logo logo
Effects of Bacillus licheniformis and Bacillus subtilis complex on growth performance and faecal noxious gas emissions in growing-finishing pigs. Lan Ruixia,Kim In Ho Journal of the science of food and agriculture BACKGROUND:Probiotics have been used to address antibiotic alternatives and environmental concerns. This study was conducted to evaluate the effects of Bacillus licheniformis and Bacillus subtilis complex supplementation on growth performance, nutrient digestibility, faecal microflora and faecal noxious gas emissions in growing-finishing pigs. RESULTS:Dietary B. licheniformis and B. subtilis complex (B. licheniformis and B. subtilis in a 1:1 ratio) supplementation showed a linear increase (P < 0.05) in digestibility of dry matter at weeks 6, 12 and 15, a linear increase (P < 0.05) in digestibility of nitrogen at week 12, a linear increase (P < 0.05) in faecal Lactobacillus counts at weeks 6 and 12, a linear decrease (P < 0.05) in ammonia (NH ) emission at weeks 6 and 12 and a linear decrease (P < 0.05) in total mercaptan emission at weeks 3, 9 and 15. CONCLUSION:Dietary B. licheniformis and B. subtilis complex supplementation increased digestibility and faecal Lactobacillus counts and decreased faecal NH and total mercaptan emissions in growing-finishing pigs. © 2018 Society of Chemical Industry. 10.1002/jsfa.9333
Comparative effects of Bacillus subtilis and Bacillus licheniformis on live performance, blood metabolites and intestinal features in broiler inoculated with Salmonella infection during the finisher phase. Abudabos Alaeldein M,Aljumaah Mashael R,Alkhulaifi Manal M,Alabdullatif Abdulaziz,Suliman Gamal M,R Al Sulaiman Ali Microbial pathogenesis Free of Salmonella infection, a total of 300 broiler chicks (Ross 308) were randomly allotted to six dietary treatments (10 replicates) as follows: Negative control (only the basal diet); positive control (infected only); T1, infection + antibiotic (avilamycin); T2, infection + Bacillus subtilis and T3, Salmonella infection + Bacillus licheniformis. The results revealed that production performance was severely affected in the infected group. Also the supplementation of Bacillus subtilis (T2) significantly (P < 0.01) improved feed intake, body weight and performance efficiency factor as compared to the positive control. In addition, feed conversion ratio was significantly (P < 0.01) improved in T2 and T3 compared to the positive control. The results of intestinal health showed that significantly (P < 0.01) higher villus height and total surface area were found in T2 compared to positive control. The results of blood cholesterol, glucose, globulin and total protein concentration were significantly (P < 0.05) higher in T3 compared to the infected birds (positive control). It was concluded that Bacillus subtilis produced superior results in comparison with Bacillus licheniformis in term of growth and intestinal features in broiler by mitigating the deleterious effects of Salmonella infection. 10.1016/j.micpath.2019.103870
Bacillus subtilis and Bacillus licheniformis reduce faecal protein catabolites concentration and odour in dogs. BMC veterinary research BACKGROUND:Direct-fed microbials (DFM), such as Bacillus subtilis and Bacillus licheniformis, may improve gut functionality of the host by favouring non-pathogenic bacteria and reducing the formation of putrefactive compounds. The aim of this study was to assess the nutrient digestibility, faecal characteristics and intestinal-fermentation products in dogs fed diets with Bacillus subtilis and Bacillus licheniformis. Sixteen dogs were randomly divided into two groups. Every eight dogs were fed with the control diet or the diet with the addition of 62.5 g of DFM (B. subtilis and B. licheniformis)/ton. Diets were provided throughout a 20-day adaptation period, followed by 5 days of total faecal collection. Nutrient digestibility and the metabolisable energy of the diets, plus the dogs' faecal characteristics and intestinal fermentation products were assessed. RESULTS:There were no differences in nutrient digestibility (P > 0.05). However, DFM supplementation improved faecal score and resulted in less fetid faeces (P < 0.001). DFM inclusion reduced (P < 0.05) the biogenic amines concentration: putrescine, spermidine and cadaverine, besides the concentration of phenols and quinoline. CONCLUSIONS:The use of B. subtillis and B. licheniformis as DFM reduce the concentration of nitrogen fermentation products in faeces and faecal odour, but the digestibility of nutrients is not altered in dogs. 10.1186/s12917-020-02321-7
Lactobacillus spp. reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. de Souza Marielen,Baptista Ana Angelita S,Valdiviezo Milton J J,Justino Larissa,Menck-Costa Maísa F,Ferraz Camila R,da Gloria Eduardo M,Verri Waldiceu A,Bracarense Ana Paula F R L Toxicon : official journal of the International Society on Toxinology The mycotoxin deoxynivalenol (DON) contaminates animal feed worldwide, frequently resulting in poor performance and economic losses. Data concerning the effects on poultry health or focusing on intestinal toxicity or the response to oxidative stress are scarce. Also, there is a need for strategies to mitigate the negative effects of DON. This study aimed to investigate the effects of Lactobacillus spp. treatments on the intestine, liver and kidney of poultry fed a DON-contaminated diet. To achieve this aim, histological, morphometrical and histochemical assays were performed. The oxidative stress response was also analyzed by the tests: reduced glutathione, ferric reducing ability, reducing of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), nitro blue tetrazolium detection of superoxide anion, and thiobarbituric acid reactive substances. One-day-old broilers chickens (n 50) were submitted to the following treatments: control, DON (19.3 mg kg), viable Lactobacillus spp. + DON (VL + DON), heat-inactivated Lactobacillus spp. + DON (HIL + DON), Lactobacillus spp. culture supernatant + DON (LCS + DON). The animals received the contaminated diet for seven days. DON increased the intestinal and liver lesion score, while the Lactobacillus spp. treatments (LT) remained like the control. DON reduced the villi height and increased the crypt depths. The LT showed crypt depths similar to control, and higher villi: crypt ratio in duodenum and jejunum. In the ileum, the LT reduced the goblet cell count in relation to DON group. DON increased the number of intraepithelial lymphocytes (IEL) in jejunum and ileum, while the VL + DON treatment induced a significant decrease in IEL in comparison to DON. DON-diet induced an oxidative stress response in the intestine and liver, and also reduced the antioxidant capacity in these tissues, while LT treatments remained mostly similar to control. DON induced no change in redox balance in the kidney. The LT improved the intestinal health after DON acute exposure, reducing the oxidative stress damage mainly on jejunum and liver. 10.1016/j.toxicon.2020.07.002
Bacillus subtilis B21 and Bacillus licheniformis B26 improve intestinal health and performance of broiler chickens with Clostridium perfringens-induced necrotic enteritis. Musa Bello Bodinga,Duan Yongle,Khawar Hayat,Sun Qingzhu,Ren Zhouzheng,Elsiddig Mohamed Mohamed Abdalla,Abbasi Imtiaz Hussain Raja,Yang Xiaojun Journal of animal physiology and animal nutrition This study investigated the influence of Bacillus-based probiotics on performance and intestinal health in broiler challenged with Clostridium perfringens-induced necrotic enteritis. One-day-old Arbor Acre (n = 480) were randomly assigned to four treatments with 10 cages of 12 birds: (a) basal diet negative control (NC), with no probiotics nor antibiotics formulated to contain 2,930 and 3,060 kcal/kg with 24.07 and 15.98% CP, for starter and finisher diet, respectively, (b) basal diet + enramycin (5 mg/kg), an antibiotic growth promoter (AGP); (c) basal diet + Bacillus subtilis B21 at 2 × 10 CFU per g (BS); (d) basal diet + Bacillus licheniformis B26 at 2 × 10 CFU per g (BL); growth performance, intestinal morphology, intestinal lesion scores, short-chain fatty acids (SCFAs) and mucosal barrier tight junction's (TJ) mRNA expression were assessed. NC- and BL-fed groups showed higher (p = 0.005) average daily feed intake from d1 to d21 than AGP and BS, whereas BS- and AGP-fed groups showed higher average daily weight gain from d22 to d42 and d1 to d42 of age. Higher mortality rate of (12.5%) and lower of (5.5%) were recorded in AGP and NC fed-groups respectively, lesion score was higher in BS and BL than in AGP, while no lesion was observed in NC group, results revealed higher duodenum and jejunum villus height to crypt depth (VH:CD) compared with NC and BS. Probiotics-fed groups showed higher total (SCFAs), acetic and butyric acid concentrations at d21 post-challenge (PC) than other groups. The expression of claudin-1 was upregulated in duodenum (d7) PC and in jejunum (d7) and (d21) PC in BL group, while at d21 PC, the expression of occludens was higher in jejunum and ileum by AGP and BL. The present study indicated both BS and BL have some similarity with AGP in preventing or partially preventing NE effect in broilers. 10.1111/jpn.13082
Effects of Enterococcus faecalis on egg production, egg quality and caecal microbiota of hens during the late laying period. Zhang Yaowen,Ma Wenfeng,Zhang Zhidan,Liu Fangyuan,Wang Jie,Yin Yulong,Wang Zhanbin Archives of animal nutrition This study was conducted to determine the effects of diet supplementation of laying hens with Enterococcus faecalis (EF) on egg production, egg quality and caecal microbiota. A total of 360 Hy-Line Brown laying hens (72 weeks old) were divided into three groups with four replicates of 30 birds each. The laying hens were fed with the basal diet (Control), the basal diet + 3.75 · 10 cfu EF/kg (Group I) or the basal diet + 7.5 · 10 cfu EF/kg (Group II). The experiment lasted for 45 d. Eggs and caecal samples were collected at the end of the experiment. Results showed that dietary supplementation with EF did not affect the average daily egg weight, cracked egg rate, mortality and egg quality. However, EF supplementation caused a significantly increased laying rate and decreased feed/egg ratio (p < 0.05). The differences in caecal microbiota between Group II and the Control were significant. The relative abundance of Verrucomicrobia and Cyanobacteria at the phylum level, Rikenellaceae, Christensenellaceae and Veillonellaceae at the family level, and the Faecalibacterium, Christensenellaceae R-7 group and Eubacterium coprostanoligenes group at the genus level changed significantly in Group II compared with the Control (p < 0.05). In conclusion, the tested dietary supplementations with EF improved product performance and affected the caecal microbial community structure of laying hens during the late laying period. 10.1080/1745039X.2019.1591128
Effects of probiotics Lactobacillus plantarum 16 and Paenibacillus polymyxa 10 on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. Wu Yanping,Wang Baikui,Zeng Zhonghua,Liu Rongrong,Tang Li,Gong Li,Li Weifen Poultry science This study aimed to investigate the effects of Lactobacillus plantarum 16 (Lac16) and Paenibacillus polymyxa 10 (BSC10) on intestinal barrier function, antioxidative capacity, apoptosis, immune response, and biochemical parameters in broilers. A total of 540 one-day-old broiler chicks (Cobb500) were randomly allocated to three groups of 180 birds, and fed either a basal diet or a basal diet supplemented with 108 colony-forming units Lac16 or BSC10 per kilogram feed for 21 D. The results revealed that both Lac16 and BSC10 maintained ileal mucosal morphology, and BSC10 regulated the expression of barrier function-related genes. Birds fed with probiotics decreased malondialdehyde level in jejunal mucosa and serum, and the increased activities of hepatic GSH-Px and jejunal CAT were observed in BSC10 group (P < 0.05). Immunohistochemistry of Bax, Bcl-2 and proliferating cell nuclear antigen and TUNEL-immunofluorescence assay demonstrated that Lac16 and BSC10 exerted beneficial effects on cell apoptosis and proliferation, as indicated by the gene expression of down-regulated Bax and p53 as well as a significant upregulation of Bcl-2 (P < 0.05). In addition, Lac16 and BSC10 significantly increased NO production and iNOS activity in liver and jejunal mucosa, and gene expression of IFN-γ (P < 0.01), IL-6 (P < 0.05), and IL-10 (P < 0.05 and P < 0.01, respectively) in ileum mucosa, whereas markedly decreased the expression of Cox2 (P < 0.05). Furthermore, it was found that Lac16 and BSC10 significantly reduced levels of alkaline phosphatase (P < 0.05 and P < 0.01, respectively) and creatine kinase (P < 0.05). Moreover, BSC10 significantly reduced uric acid (P < 0.05) and low-density lipoprotein levels (P < 0.01). Taken together, Lac16 and BSC10 could improve intestinal and body health status of broilers by increasing intestinal barrier function, anti-oxidative capacity and immunity, and decreasing cell apoptosis with strain-specificity. 10.3382/ps/pez226
Efficacy of dietary Bacillus subtilis and Bacillus licheniformis supplementation continuously in pullet and lay period on egg production, excreta microflora, and egg quality of Hyline-Brown birds. Upadhaya S D,Rudeaux Florence,Kim I H Poultry science The aim of the present study was to evaluate the efficacy of Bacillus-based probiotic in pullet to lay period. A total of 12-wk-old 384 Hy-line Brown pullets (initial BW of 1.05 kg, 8 replications; 16 birds per replication pen) were used in a 6-wk feeding trial. Birds were blocked based on BW and randomly allotted to 1 of 3 dietary treatments that consisted of basal diet as CON; GPM, basal diet+ (GalliPro Max/B. subtilis, 500 g/ton); GPT, basal diet+ (GalliPro Tect/B. licheniformis, 500 g/ton). During the pullet stage, birds that were fed CON diet and CON diet supplemented with either 500 g/ton B. sublitis or B. licheniformis were randomly assigned to 1 of 7 treatments with 9 replications (6 birds per replication) during lay period. For this, a total of 162 birds fed CON diets were randomly chosen and subdivided into 3 groups and fed CON, GPM, and GPT diets. From the birds that were fed either GPM or GPT diet at pullet phase, about 108 birds from each treatment were randomly chosen and were subdivided into 2 treatments and fed either GPM or GPT diet. The feed intake was higher (P < 0.05) in GPT treatment and lower (P < 0.05) in GPM treatment compared with CON during the pullet period. In addition, the excreta Escherichia coli counts were reduced (P < 0.05) in pullets fed GPT diet. The egg production rate significantly increased (P < 0.05) for layers fed GPM diet and a slight increase was also seen for GPT treatment birds compared with CON during week 32. During the lay period, the average mean values for albumen height and yolk color at week 25 to 45 were higher (P < 0.05) for GPM fed birds compared with those fed GPT and CON diets. In conclusion, Bacillus-based probiotic supplementation in the diet conferred some positive effects during pullet to lay period. 10.3382/ps/pez184
Evaluating two multistrain probiotics on growth performance, intestinal morphology, lipid oxidation and ileal microflora in chickens. Kazemi Seyed Amin,Ahmadi Hamed,Karimi Torshizi Mohammad A Journal of animal physiology and animal nutrition An experiment was conducted to investigate the supplementation of two commercially available multistrain probiotics as an alternative to antibiotics on growth performance, intestinal morphology, lipid oxidation and ileal microflora in broiler chickens. A total of 280-day-old ROSS 308 mixed-sex broiler chickens with an average initial body weight of 42 ± 0.5 g were randomly divided into four treatments with five replicate cages of 14 birds each cage in a completely randomized design and fed with the following diets for 42 day: (a) control (CON) (antibiotic-free diet), (b) antibiotic (ANT) (CON + Avilamycin 150 g/ton feed), (c) probiotic A (CON + Protexin 150 g/ton feed) and (d) probiotic B (CON + Bio-Poul 200 g/ton feed). The results showed the broilers fed the ANT diet had greater average daily gain than broilers fed the CON diet during day 1-14 (p < 0.05). At day 42, two birds were randomly selected per replicate for evaluation intestinal morphology, lipid oxidation and ileal microflora. birds fed diet supplemented with probiotic A and probiotic B increased villus height and goblet cells numbers in the jejunum and villus height to crypt depth ratio and villus height in the ileum as compared to birds fed CON diet (p < 0.05). The malondialdehyde value was reduced (p < 0.05) in the ANT, probiotic B and probiotic A groups compared with the CON group. The Lactobacillus population was increased and Clostridium spp. population decreased in the ileum of broilers fed diets containing the probiotic B and probiotic A compared with those fed CON diet (p < 0.05). The results from this study indicate that the probiotic A (Protexin ) and probiotic B (Bio-Poul ) used in this trial may serve as alternatives to ANT. 10.1111/jpn.13124
Comparative influence of dietary probiotic, yoghurt, and sodium butyrate on growth performance, intestinal microbiota, blood hematology, and immune response of meat-type chickens. Tropical animal health and production This study was conducted to assess the effects of early dietary supplementation with probiotic, yoghurt, and sodium butyrate (SB) on the growth performance, intestinal microbiota, blood hematology, and immune response of broiler chickens. A total of 180 1-day-old SASSO broiler chicks, housed in 12 equal floor pen replicates each of 15 chicks, were assigned randomly to four feeding treatments (three replicates/treatment, n = 45): T1. Basal diet (BD) (control), T2. BD incorporated 1 g of a commercial probiotic per kilogram, T3. BD mixed with 5 g of fresh yoghurt per kilogram, and T4. BD incorporated 0.6 g SB/kg. The experimental birds received the dietary treatments from 1 to 21 days of age. The dietary supplementation (g/kg) with commercial probiotic, yoghurt, and SB during the first 21 days of age did not affect broiler's growth performance variables at day 42, relative weight of immunity organs, blood hematological indices, or the ileal and cecal bacterial counts at day 42, but increased the serum IgG levels and reduced the cecal aerobes at day 21. The probiotic and yoghurt treatments increased the serum content of antibody titer against Newcastle disease virus and decreased the counts of ileal aerobes and E. coli at day 21, whereas the SB treatment increased the ileal lactobacilli count at day 21. In conclusion, the tested feed additives displayed beneficial impacts on broilers' gut microbiota at day 21 and serum IgG at day 42, but did not affect the growth performance or blood hematological indices at 42 days of age. 10.1007/s11250-019-01945-8
Effect of dietary supplementation of Bacillus subtilis DSM29784 on hen performance, egg quality indices, and apparent retention of dietary components in laying hens from 19 to 48 weeks of age. Neijat M,Shirley R B,Barton J,Thiery P,Welsher A,Kiarie E Poultry science The aim of the current study was to evaluate egg production, quality, and apparent retention (AR) of components in response to a multi-dose application of a single strain Bacillus subtilis (SSB; DSM29784) in a corn-soybean meal basal diet fed to hens (19 to 48 wk of age). The treatments consisted of a basal diet with either no probiotic (control, CON), 1.1E+08 (low, LSSB), 2.2E+08 (medium, MSSB) or 1.1E+09 (high, HSSB) CFU/kg of diet. A total of 336, 19-wk old Shaver White layers were used at a stocking density of 7 and 6 hens/replicate-cage in layer I (week-19 to 28) and layer II (week-29 to 48) phases, respectively. Evaluated variables included feed intake (FI), body weight (BW), feed conversion ratio (FCR), egg production, weight, mass, and egg quality (shell thickness, shell breaking strength, albumen height (AH), and Haugh unit (HU)). Excreta was collected at the end of week-28 for AR of components and apparent metabolizable energy (AME). Supplementation of SSB increased (P = 0.008) FI during peak egg-lay (week-24) and BW increased linearly (P = 0.019) in early layer II (week-32). In layer I, LSSB compared with CON increased EM (g/egg) by 3.3% (P = 0.049). In layer II, SSB inclusion tended to improve FCR (linear, P = 0.094; g FI: g EM). Although shell breaking strength was lowest at week-20 with HSSB (4.518 vs. 4.889 kgf for HSSB vs. CON; P = 0.045), AH and HU were improved at higher dose of SSB, in both phases (P ≤ 0.005). Apparent retention of dry matter, AME, and minerals were improved (P < 0.0001) in a dose response. Hence, while the low dose of B. subtilis DSM29784 improved hen performance and maintained egg quality in both phases, a higher dose of SSB improved the interior protein quality of eggs (AH and HU). 10.3382/ps/pez324
Effect of Bacillus subtilis DSM 32315 on the intestinal structural integrity and growth performance of broiler chickens under necrotic enteritis challenge. Sokale A O,Menconi A,Mathis G F,Lumpkins B,Sims M D,Whelan R A,Doranalli K Poultry science The effect of dietary inclusion of Bacillus subtilis DSM 32315 on the intestinal health and growth performance of Cobb 500 male broilers subjected to a Clostridium perfringens-induced necrotic enteritis (NE) challenge was determined in 2 experiments. In experiment 1, chicks were randomly assigned to 4 treatments of 10 replicate/treatment. In experiment 2, chicks were randomly assigned to 4 treatments of 12 replicates/treatment. The experimental treatments were non-infected, non-supplemented control, infected, non-supplemented control (IC), infected + Bacillus subtilis DSM 32315 (B. subtilis DSM 32315), infected + bacitracin methylene disalicylate (BMD). In both experiments, NE was induced by oral inoculation of toxin producing C. perfringens on 3 consecutive days between 17 and 20 D of age, following exposure of birds to pre-disposing conditions. At day 28 (experiment 1), broilers fed diets with B. subtilis DSM 32315 exhibited a significantly higher body weight, lower mortality, and intestinal NE lesion score, compared to the IC treatment. At day 42 (experiment 2), B. subtilis DSM 32315 supplementation significantly improved BW, feed conversion ratio, production efficiency factor, NE lesion score, and mortality, compared to IC treatment. The effect of B. subtilis DSM 32315 on intestinal integrity of NE challenged chickens was evaluated with histomorphometry. A significantly shallower crypt depth and higher villus height to crypt depth ratio were observed in the mid-intestine of birds belonging to the B. subtilis DSM 32315 group, compared to the IC group. Furthermore, B. subtilis DSM 32315 supplementation significantly reduced the enteritis index associated with NE. In both experiments, the effect of B. subtilis DSM 32315 on the phenotypic measurements of NE and performance was comparable to the effect observed with BMD supplementation. In conclusion, supplementation of the direct fed microbial strain B. subtilis DSM 32315 can ameliorate the pathology and performance detriments associated with NE. 10.3382/ps/pez368
In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Taha-Abdelaziz Khaled,Astill Jake,Kulkarni Raveendra R,Read Leah R,Najarian Afsaneh,Farber Jeffrey M,Sharif Shayan Scientific reports The present study was undertaken to assess the antimicrobial activity of Lactobacillus spp. (L. salivarius, L. johnsonii, L. reuteri, L. crispatus, and L. gasseri) against Campylobacter jejuni as well as their immunomodulatory capabilities. The results demonstrated that lactobacilli exhibit differential antagonistic effects against C. jejuni and vary in their ability to elicit innate responses in chicken macrophages. All lactobacilli exerted inhibitory effects on C. jejuni growth, abrogated the production of the quorum sensing molecule autoinducer-2 (AI-2) by C. jejuni and inhibited the invasion of C. jejuni in human intestinal epithelial cells. Additionally, all lactobacilli, except L. reuteri, significantly reduced the expression of virulence-related genes in C. jejuni, including genes responsible for motility (flaA, flaB, and flhA), invasion (ciaB), and AI-2 production (luxS). All lactobacilli enhanced C. jejuni phagocytosis by macrophages and increased the expression of interferon (IFN)-γ, interleukin (IL)-1β, IL-12p40, IL-10, and chemokine (CXCLi2) in macrophages. Furthermore, L. salivarius, L. reuteri, L. crispatus, and a mixture of all lactobacilli significantly increased expression of the co-stimulatory molecules CD40, CD80, and CD86 in macrophages. In conclusion, these findings demonstrate that lactobacilli possess anti-Campylobacter and immunomodulatory activities. Further studies are needed to assess their protective efficacy against intestinal colonization by C. jejuni in broiler chickens. 10.1038/s41598-019-54494-3
Composition and inclusion of probiotics in broiler diets alter intestinal permeability and spleen immune cell profiles without negatively affecting performance1. Meyer Meaghan M,Fries-Craft Krysten A,Bobeck Elizabeth A Journal of animal science Probiotic feed additives with potential to enhance performance, health, and immunity have gained considerable popularity in commercial broiler production. The study objectives were to measure broiler performance, gut integrity, and splenic immune cell profiles in birds fed one of two probiotics at two inclusion levels. Nine hundred sixty Ross 708 broilers (12 per pen) were randomly assigned to no additive control, 0.05% or 0.10% LactoCare (Lactobacillus reuteri), or 0.05% or 0.10% LactoPlan (Lactobacillus plantarum) dietary treatments for 6 wk. On day 27, a 20-pen subset was utilized for a fluorescein isothiocyanate dextran (FITC-d) assay, where half of the pens were subject to a 12-h feed restriction (FR) pregavage. Serum collected from blood drawn 1-h postgavage was analyzed for relative fluorescence of FITC-d absorbed across the intestinal barrier as a gut leakiness indicator. On day 42, spleens from eight birds per treatment were collected for immune cell profile analysis by multicolor flow cytometry. Although performance outcomes were not affected by dietary treatment, FITC-d absorption post-FR was increased 57% in the 0.05% LactoPlan treatment, and was decreased by 12.6% in the 0.05% LactoCare diet, 12% in the 0.10% LactoCare diet, and 22% in the 0.10% LactoPlan diet compared with the control. This indicates a positive impact in barrier integrity maintenance due to 0.05% and 0.10% LactoCare and 0.10% LactoPlan diet following a challenge. Immune cell profiles varied between the two probiotic compositions, with an approximately 50% reduction in splenic innate immune cells (monocyte/macrophage+) in birds fed LactoPlan (P < 0.0001) and greater overall percentages of CD45+ leukocytes and CD3+ T cells in birds fed 0.10% LactoCare (P < 0.0001). LactoPlan diets shifted splenic T-cell populations in favor of CD8α + cytotoxic T cells (TC; P = 0.007), while higher inclusions (0.10%) of either probiotic increased the percentage of activated CD4+ helper T cells (TH; P < 0.0001). These results indicate that compositionally different probiotics had varying effects on the gut permeability and splenic immune cell profiles in broiler chickens, particularly at higher inclusion rates, but observed changes to underlying physiology did not negatively impact performance outcomes. The ability of a probiotic to alter gut permeability and immune cell profile, therefore, may depend on the compositional complexity of the product as well as inclusion rate. 10.1093/jas/skz383
Evaluation of a -Based Direct-Fed Microbial on Aflatoxin B1 Toxic Effects, Performance, Immunologic Status, and Serum Biochemical Parameters in Broiler Chickens. Solis-Cruz Bruno,Hernandez-Patlan Daniel,Petrone Victor M,Pontin Karine P,Latorre Juan D,Beyssac Eric,Hernandez-Velasco Xochitl,Merino-Guzman Ruben,Arreguin Margarita A,Hargis Billy M,Lopez-Arellano Raquel,Tellez-Isaias Guillermo Avian diseases The aim of the present study was to evaluate the effect of a commercial direct-fed microbial (DFM) on aflatoxin B1 toxic effects, performance, and biochemical and immunologic parameters in broiler chickens. Ninety 1-day-old Cobb 500 male broiler chicks were raised in floor pens for a period of 21 days. Chicks were neck-tagged, individually weighed, and randomly allocated to one of three groups: Negative control (basal feed), aflatoxin B1 (basal feed + 2 ppm AFB1), and DFM (basal feed + 2 ppm AFB1 + direct-fed microbial). Each group had three replicates of 10 chickens ( = 30/group). Body weight and body weight gain were calculated weekly, while feed intake and feed conversion ratio were determined when broilers were 21 days old. On day 21, all chickens were bled, gastrointestinal samples were collected, and spleen and bursa of Fabricius were weighed. This study confirmed that 2 ppm of AFB1 causes severe detrimental effects on performance, biochemical parameters, and immunologic parameters, generating hepatic lesions in broiler chickens ( < 0.05). However, it was also observed that DFM supplementation provided beneficial effects that might help to improve gut barrier function, anti-inflammatory and antioxidant activities, as well as humoral and cellular immunomodulation. The results of the present study suggest that this -DFM added at a concentration of 10 spores/gram of feed can be used to counteract the negative effects that occur when birds consume diets contaminated with AFB1, showing beneficial effects on performance parameters, relative organ weights, hepatic lesions, immune response, and serum biochemical variables. The addition of this -DFM might mitigate and decrease aflatoxicosis problems in the poultry industry, improving food security, alleviating public health problems, and providing economic benefits. Future studies are needed to fully elucidate the specific mechanisms by which this -DFM counteracts the toxic effects of aflatoxin B1. 10.1637/aviandiseases-D-19-00100
The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Park Inkyung,Lee Youngsub,Goo Doyun,Zimmerman N P,Smith A H,Rehberger T,Lillehoj Hyun S Poultry science The objective of this study was to investigate the effects of dietary Bacillus subtilis supplementation on growth performance, jejunal lesion scores, oocyst shedding, and cytokine and tight junction protein expression in broiler chickens infected with Eimeria maxima. A total of 196 male day-old Ross 708 broilers were given a nonexperimental diet until 14 D of age. Then, all chickens were randomly assigned to one of seven dietary treatments: 2 basal diets (CON and NC); CON + virginiamycin (AB1); CON + bacitracin methylene disalicylate (BMD; AB2); CON + B. subtilis 1781 (PB1); CON + B. subtilis 747 (PB2); or CON + B. subtilis 1781 + 747 (PB3). At day 21, all chickens except those in the CON group were orally inoculated with E. maxima oocysts. At 7 D after E. maxima infection, the body weight gains of chickens fed PB2 and PB3 increased (P = 0.032) as much as those in chickens fed AB2. The body weight gain and feed efficiency of chickens fed PB2 were significantly increased (P < 0.001), and PB2 chickens showed (P = 0.005) the lowest lesion scores after E. maxima infection. Chickens fed PB2 showed (P < 0.05) lower mRNA expression of IL-1β in infected chicken groups. Chickens in the AB1, AB2, PB1, PB2, and PB3 groups showed (P < 0.05) greater mRNA expression of junctional adhesion molecule 2 in jejunal tissue, whereas occludin expression increased (P < 0.05) in the jejunal tissue of chickens fed AB2 or PB2. Dietary B. subtilis supplementation significantly improved the growth performance of young chickens to a level comparable with that induced by virginiamycin or BMD without E. maxima infection. After infection with E. maxima, dietary virginiamycin and BMD significantly enhanced the epithelial barrier integrity, and the dietary B. subtilis 747 showed significantly enhanced growth performance, intestinal immunity, and epithelial barrier integrity. Together our results indicated that certain strains of B. subtilis provide beneficial effects on the growth of young broiler chickens and have the potential to replace antibiotic growth promoters. 10.1016/j.psj.2019.12.002
The effects and combinational effects of Bacillus subtilis and montmorillonite on the intestinal health status in laying hens. Chen J F,Xu M M,Kang K L,Tang S G,He C Q,Qu X Y,Guo S C Poultry science This study was conducted to evaluate the effects and combinational effects of Bacillus subtilis (BS) and montmorillonite (MMT) on laying performance, gut mucosal oxidation status, and intestinal immunological and physical barrier functions of laying hens. Three hundred sixty laying hens (29-week-old) were randomly assigned to a 2 × 2 factorial arrangement of treatments (n = 6) for 10 wk as follows: (1) basal diet; (2) the basal diet plus 5 × 10 cfu BS/kg; (3) the basal diet plus 0.5 g MMT/kg; and (4) the basal diet plus 5 × 10 cfu BS/kg and 0.5 g MMT/kg. Dietary supplementation with BS increased egg production and egg mass, the activities of catalase (CAT) and total superoxide dismutase in the intestinal mucosa, and villus height and villus height-to-crypt depth ratio of the jejunum (P < 0.05) but downregulated the mRNA expression levels of toll-like receptor 4 and myeloid differentiation factor 88 (MyD88) in the duodenum and jejunum, interleukin 1 beta in the duodenum, and nuclear factor kappa B P65 (NF-κB P65) and tumor necrosis factor alpha in the jejunum (P < 0.05). Dietary supplementation with MMT increased egg production and egg mass, the concentration of secretory immunoglobulin A in the duodenum, and the occludin mRNA expression level in the jejunum (P < 0.05) but reduced feed conversion ratio, malondialdehyde concentration in the duodenum and jejunum, and the mRNA expression level of MyD88 in the jejunum (P < 0.05). In addition, there was an interaction effect between BS and MMT supplementation on the CAT activity and the MyD88 mRNA expression level in the duodenum and the mRNA expression level of occludin in the jejunum (P < 0.05). In conclusion, dietary BS and MMT and their combination may improve the intestinal health status of laying hens, which may contribute to the increase in hens' laying performance. 10.1016/j.psj.2019.11.016
Bacillus licheniformis-fermented products improve growth performance and the fecal microbiota community in broilers. Chen Ying-Chu,Yu Yu-Hsiang Poultry science This study investigated the effects of Bacillus licheniformis-fermented products on the growth performance and fecal microbial community of broilers. A total of 144 one-day-old male broiler chicks (Ross 308) were randomly assigned into 4 dietary treatments, with 6 replicate cages per treatment and 6 birds per cage. The dietary treatments comprised a basal diet as control, control plus 1 and 3 g/kg of B. licheniformis-fermented products, and control plus 10 mg/kg of enramycin. The results indicated that 3 g/kg of B. licheniformis-fermented products increased (P < 0.05) the BW and ADG of broilers relative to controls. No significant difference was observed in the growth performance of broilers fed enramycin and 3 g/kg of B. licheniformis-fermented products. However, principal coordinate analysis and a heatmap of species abundance indicated distinct clusters between the groups treated with enramycin and 3 g/kg of B. licheniformis-fermented products. The abundance of the phylum Firmicutes in feces increased (P < 0.05) in broilers fed 3 g/kg of B. licheniformis-fermented products, whereas the abundance of the phyla Verrucomicrobia and Bacteroidetes in feces decreased (P < 0.05) in response to treatment with 3 g/kg of B. licheniformis-fermented products. The abundance of the genera Enterococcus, Akkermansia, Ruminococcus torques group, Faecalibacterium, and Parabacteroides in feces decreased (P < 0.05) in broilers fed 3 g/kg of B. licheniformis-fermented products, whereas the abundance of the genus Lactobacillus in feces increased (P < 0.05) in response to treatment with 3 g/kg of B. licheniformis-fermented products. The average abundance of the genus Lactobacillus in feces was positively correlated with the growth performance of broilers. These results demonstrate that B. licheniformis-fermented products can improve the growth performance and fecal microflora composition of broilers. 10.1016/j.psj.2019.10.061
Compound probiotics alleviating aflatoxin B and zearalenone toxic effects on broiler production performance and gut microbiota. Chang Juan,Wang Tao,Wang Ping,Yin Qingqiang,Liu Chaoqi,Zhu Qun,Lu Fushan,Gao Tianzeng Ecotoxicology and environmental safety In order to alleviate toxic effects of aflatoxins B (AFB) and zearalenone (ZEA) on broiler production performance and gut microbiota, three kinds of compound probiotics (CP) were selected. The optimal ratios of Bacillus subtilis, Lactobacillus casei and Candida utilis in broiler diets were 7, 5 and 6 log CFU/g for ZEA biodegradation (CP1); 6, 7 and 7 log CFU/g for AFB biodegradation (CP2); 7, 6 and 7 log CFU/g for ZEA + AFB biodegradation (CP3). A total of 350 1-day-old Ross broilers were randomly divided into 7 groups. Group A was the basal diet, group B-G contained ZEA, AFB, ZEA + AFB, ZEA + CP1, AFB+CP2, ZEA + AFB+CP3, respectively. The experiment showed that AFB or AFB+ZEA significantly decreased broiler production performance, damaged liver and jejunum, increased mycotoxin residues in broiler body; however, three kinds of compound probiotics additions could alleviate mycotoxin negative effects on the above parameters (p < 0.05). The gut microbiota analysis indicated that AFB+ZEA increased jejunal microbial richness, but which were decreased to almost the same level as the control group by CP3 addition. CP3 addition significantly increased jejunal Firmicutes and Lactobacillus aviarius abundances. The correlative analysis showed that gut Lactobacillus aviarius abundance was positively correlated with average daily gain (ADG) of broilers (p < 0.05), while AFB+ZEA addition decreased its relative abundance, indicating that CP3 addition increased broiler growth by increasing Lactobacillus aviarius abundance. AFB and ZEA residues in broiler body were negatively correlated with the gut beneficial bacterial abundances (p < 0.01), but positively correlated with the potentially harmful bacterial abundances (p < 0.05), which inferred that CP3 addition could decrease mycotoxin residues through positively regulating gut relative bacterial abundances. In conclusion, compound probiotics could keep gut microbiota stable, degrade mycotoxins, alleviate histological lesions, increase production performance and reduce mycotoxin toxicity for broilers. 10.1016/j.ecoenv.2020.110420
Effects of dietary probiotic (Pediococcus acidilactici) supplementation on productive performance, egg quality, and body composition in laying hens fed diets varying in energy density. Mikulski Dariusz,Jankowski Jan,Mikulska Marzena,Demey Vanessa Poultry science This study was conducted to determine the effect of probiotic Pediococcus acidilactici (PA) strain MA18/5M supplementation of diets with different dietary energy levels on productive performance, egg quality, and body composition in Hy-Line Brown hens during a 16-week period from 32 to 47 wk of age. The experimental treatments with a 2 × 2 factorial design received a 2 wheat-corn-soybean diet: a moderately low energy density diet with 2,650 kcal ME/kg (M-LED) and a low energy density diet based on the M-LED diet with 2,550 kcal ME/kg (LED), each diet without and with probiotic supplementation (M-LED, LED, M-LEDp, and LEDp, respectively). Reduced dietary energy levels had a particularly negative effect on egg weight (61.7 vs. 63.3 g; -2.6%, P < 0.001), egg mass output (1.67 vs. 1.71 kg; -2.4%, P = 0.015), and FCR (2.01 vs. 1.97 kg feed/kg egg; +2%, P = 0.028). In hens administered the LED diet, deteriorated productive performance was accompanied by greater body weight loss (P < 0.001) and reduced abdominal fat content (P < 0.033) as compared with the M-LED group. Dietary probiotic inclusion increased egg weight (P = 0.015), including relative eggshell weight (P = 0.008) and eggshell thickness (P = 0.002) and significantly improved FCR (P = 0.010). No interactions between the PA-based probiotic and dietary energy levels were found in any of the tested parameters. Adding the probiotic on top of the M-LED diet improved layers performance but resulted in nonbioequivalence for the egg weight, egg mass output, and FCR compared with this group without probiotic. Probiotic supplementation of the LEDp diet improved all performance parameters except for egg weight. As a result, the laying rate, egg mass output, daily feed intake, and FCR in the LEDp treatment were bioequivalent to those noted in the M-LED group without the probiotic. The results of a bioequivalence test suggest that a low energy diet fed to laying hens promoted a probiotic response to improve energy utilization by birds. 10.1016/j.psj.2019.11.046
Effects of Paenibacillus xylanexedens on growth performance, intestinal histomorphology, intestinal microflora, and immune response in broiler chickens challenged with Escherichia coli K88. Poultry science This study investigated the effects of dietary Paenibacillus xylanexedens ysm1 supplementation on growth performance, intestinal morphology, immune response, and cecal microbiota of broiler chickens challenged with Escherichia coli K88. A total of 320 one-day-old male broiler chicks were randomly allocated to 4 treatments (8 floor pens, 10 birds/pen) including 1) negative control (NC) birds fed a basal diet and not challenged with E. coli K88; 2) positive control (PC) birds fed a basal diet and challenged with of E. coli K88; 3) P. xylanexedens ysm1 treatment (PRO) birds fed a basal diet supplemented with 1 × 10P. xylanexedens ysm1 cfu/kg feed and challenged with E. coli K88; and 4) antibiotic treatment (ANT) birds fed a basal diet supplemented with 20 mg of colistin sulphate/kg of feed and challenged with E. coli K88. The E. coli challenge decreased (P < 0.05) BWG in PC birds compared with the ANT birds on days 21 and 28. The FCR was higher (P < 0.01) in PC birds compared with the NC, PRO, and ANT birds on days 14, 21, and 28. Compared with the NC, PRO, and ANT birds on day 28, PC birds had shorter villi and higher number of goblet cells in both jejunum and ileum (P < 0.001). Irrespective of the dietary treatments, the E. coli challenge reduced the number of PCNA-positive cells in both the jejunum and ileum on day 28. Paenibacillus xylanexedens ysm1 treatment resulted in higher concentration of mucosal sIgA in the jejunum as compared to the other treatment groups on days 14 and 28. The numbers of cecal E. coli were reduced (P = 0.017) in broilers treated with P. xylanexedens ysm1 or antibiotic in comparison with the PC group on day 28. In conclusion, the present study demonstrated that dietary supplementation of this new probiotic bacteria P. xylanexedens ysm1 improved broiler performance by modulating intestinal morphology, enhancing immune response, and reducing the number of E. coli in the cecum. 10.3382/ps/pez460
A novel Bacillus based multi-strain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers. Poultry science There is a necessity for the implementation of in-feed probiotics in the poultry production industry, following strict regulations around the use of antibiotic growth promoters (AGP). Bacillus spp. are becoming an attractive alternative because of their functionality and stability. This study aims to evaluate the effect of a novel multi-strain Bacillus based probiotic on growth performance and gut health in male Ross 308 broiler chickens challenged with Clostridium perfringens Type A. Broilers on a 4 phase feeding program were fed diets containing either a standard metabolizable energy (ME) (100%) or a reduced ME (98%) level. The test probiotic was compared to an un-supplemented negative control and a commercial benchmark product as positive control over a 35 D feeding trial, using a 2 × 3 factorial experimental design. Chicks were inoculated with a once-off dose of C. perfringens on day 14. Growth performance was measured weekly to calculate body weight (BW), feed intake (FI) and feed conversion ratio (FCR). Villi histomorphology, gut lesions, and liver weight were assessed at day 35. Broilers fed the reduced ME diet with the test probiotic achieved higher final BWs (P = 0.037) and FCR (P = 0.014) than the negative control. Broilers fed the standard ME diet with the test probiotic showed improved (P = 0.001) FCR than the negative control from day 21 onwards. Increased duodenal villi height (P = 0.012) and villi height to crypt depth ratio in the duodenum (P < 0.0001) and jejunum (P = 0.0004) were observed in broilers fed the reduced ME diet containing the test probiotic. Additionally, the test probiotic resulted in significantly reduced relative liver weights in both ME groups. Consequently, the results suggest that the novel multi-strain Bacillus based probiotic enhanced broiler performance and improved gut health and is thus attractive as an alternative to AGP's in broiler production. 10.3382/ps/pez496
Cecal microbiome composition and metabolic function in probiotic treated broilers. Rodrigues Denise R,Briggs Whitney,Duff Audrey,Chasser Kaylin,Murugesan Raj,Pender Chasity,Ramirez Shelby,Valenzuela Luis,Bielke Lisa PloS one Probiotics have become increasingly popular in the poultry industry as a promising nutritional intervention to promote the modulation of intestinal microbial communities and their metabolic activities as a means of improving health and performance. This study aimed to determine the influence of different probiotic formulations on the taxonomic and metabolic profiling of cecal microbial communities, as well as to define associations between cecal microbiota and growth parameters in 21 and 42-day-old broilers. Probiotics investigated included a synbiotic (SYNBIO), a yeast-based probiotic (YEAST), and three single-strain formulations of spore-forming Bacillus amyloliquefaciens (SINGLE1), B. subtilis (SINGLE2) and B. licheniformis (SINGLE3). Dietary inclusion of SYNBIO, YEAST, SINGLE2, and SINGLE3 into the diets supported a significant stimulation of BW and BWG by 7 days of age. Besides, SYNBIO reduced the overall mortality rate by 42d (p<0.05). No significant variation was observed among different probiotic-based formulations for cecal microbiota composition. However, there was a treatment-specific effect on the metabolic profiles, with a particular beneficial metabolic adaptation by the microbiota when supplemented by SYNBIO and SINGLE2. Furthermore, the population of Lactobacillales was identified to be strongly associated with lower Enterobacteriales colonization, higher BW means, and lower mortality rate of growing broilers. Overall, the results emphasize that probiotic supplementation may enhance the microbial energy metabolism in the ceca of young broilers. 10.1371/journal.pone.0225921
Effect of probiotic supplementation on growth performance, intestinal morphology, barrier integrity, and inflammatory response in broilers subjected to cyclic heat stress. Animal science journal = Nihon chikusan Gakkaiho This study investigated the protective effects of probiotic on heat stress-induced intestinal injury and inflammatory response in broilers. A total of 180 male broilers were randomly allocated to three treatments with four replicates each from 22 to 42 days of age. The broilers were either raised under thermoneutral (TN) conditions (23 ± 1°C) or subjected to cyclic heat stress (28-35-28°C for 12 hr daily). The broilers kept at TN conditions were fed a basal diet, and those exposed to heat stress were fed basal diets supplemented with or without probiotic at a dose of 1.5 × 10  cfu/kg. Compared with the TN group, heat stress decreased (p < .05) the growth performance, reduced (p < .05) villus height and villus height: crypt depth ratio in intestinal mucosa, increased (p < .05) serum levels of D-lactic acid on day 28 and endotoxin, TNF-α and IL-6 on day 42, and decreased (p < .05) serum IL-10 content on day 42. Dietary supplementation of probiotic reversed (p < .05) all these changes except for the growth performance in heat-stressed broilers. In conclusion, dietary inclusion of probiotic could improve intestinal morphology and barrier function, alleviate inflammatory response, but exert no ameliorative effect on growth performance of broilers under cyclic heat stress. 10.1111/asj.13433