加载中

    VEGF-A165b is cytoprotective and antiangiogenic in the retina. Magnussen Anette L,Rennel Emma S,Hua Jing,Bevan Heather S,Beazley Long Nicholas,Lehrling Christina,Gammons Melissa,Floege Juergen,Harper Steven J,Agostini Hansjürgen T,Bates David O,Churchill Amanda J Investigative ophthalmology & visual science PURPOSE:A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A(165), the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A(165)b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF(165)b and its effect on retinal epithelial and endothelial cell survival. METHODS:VEGF-A(165)b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A(165)b. RESULTS:VEGF-A(165)b dose dependently inhibited angiogenesis (IC(50), 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A(165) across monolayers in culture (IC(50), 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A(165)b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC(50), 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A(165)b. CONCLUSIONS:The survival effects of VEGF-A(165)b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A(165)b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells. 10.1167/iovs.09-4296
    Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation. Kielczewski Jennifer L,Jarajapu Yagna P R,McFarland Evan L,Cai Jun,Afzal Aqeela,Li Calzi Sergio,Chang Kyung Hee,Lydic Todd,Shaw Lynn C,Busik Julia,Hughes Jeffrey,Cardounel Arturo J,Wilson Kenneth,Lyons Timothy J,Boulton Michael E,Mames Robert N,Chan-Ling Tailoi,Grant Maria B Circulation research RATIONALE:Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury. OBJECTIVE:To examine the mechanism of IGFBP-3-mediated repair following vascular injury. METHODS AND RESULTS:We used 2 complementary vascular injury models: laser occlusion of retinal vessels in adult green fluorescent protein (GFP) chimeric mice and oxygen-induced retinopathy in mouse pups. Intravitreal injection of IGFBP-3-expressing plasmid into lasered GFP chimeric mice stimulated homing of EPCs, whereas reversing ischemia induced increases in macrophage infiltration. IGFBP-3 also reduced the retinal ceramide/sphingomyelin ratio that was increased following laser injury. In the OIR model, IGFBP-3 prevented cell death of resident vascular endothelial cells and EPCs, while simultaneously increasing astrocytic ensheathment of vessels. For EPCs to orchestrate repair, these cells must migrate into ischemic tissue. This migratory ability is mediated, in part, by endogenous NO generation. Thus, we asked whether the migratory effects of IGFBP-3 were attributable to stimulation of NO generation. IGFBP-3 increased endothelial NO synthase expression in human EPCs leading to NO generation. IGFBP-3 exposure also led to the redistribution of vasodilator-stimulated phosphoprotein, an NO regulated protein critical for cell migration. IGFBP-3-mediated NO generation required high-density lipoprotein receptor activation and stimulation of phosphatidylinositol 3-kinase/Akt pathway. CONCLUSION:These studies support consideration of IGFBP-3 as a novel agent to restore the function of injured vasculature and restore NO generation. 10.1161/CIRCRESAHA.109.199059