Parkinson's disease: etiopathogenesis and treatment. Jankovic Joseph,Tan Eng King Journal of neurology, neurosurgery, and psychiatry The concept of 'idiopathic' Parkinson's disease (PD) as a single entity has been challenged with the identification of several clinical subtypes, pathogenic genes and putative causative environmental agents. In addition to classic motor symptoms, non-motor manifestations (such as rapid eye movement sleep disorder, anosmia, constipation and depression) appear at prodromic/premotor stage and evolve, along with cognitive impairment and dysautonomia, as the disease progresses, often dominating the advanced stages of the disease. The key molecular pathogenic mechanisms include α-synuclein misfolding and aggregation, mitochondrial dysfunction, impairment of protein clearance (associated with deficient ubiquitin-proteasome and autophagy-lysosomal systems), neuroinflammation and oxidative stress. The involvement of dopaminergic as well as noradrenergic, glutamatergic, serotonergic and adenosine pathways provide insights into the rich and variable clinical phenomenology associated with PD and the possibility of alternative therapeutic approaches beyond traditional dopamine replacement therapies.One of the biggest challenges in the development of potential neuroprotective therapies has been the lack of reliable and sensitive biomarkers of progression. Immunotherapies such as the use of vaccination or monoclonal antibodies directed against aggregated, toxic α-synuclein.as well as anti-aggregation or protein clearance strategies are currently investigated in clinical trials. The application of glucagon-like peptide one receptor agonists, specific PD gene target agents (such as GBA or LRRK2 modifiers) and other potential disease modifying drugs provide cautious optimism that more effective therapies are on the horizon. Emerging therapies, such as new symptomatic drugs, innovative drug delivery systems and novel surgical interventions give hope to patients with PD about their future outcomes and prognosis. 10.1136/jnnp-2019-322338
    Recent developments in the treatment of Parkinson's Disease. Stoker Thomas B,Barker Roger A F1000Research Parkinson's disease (PD) is a common neurodegenerative disease typified by a movement disorder consisting of bradykinesia, rest tremor, rigidity, and postural instability. Treatment options for PD are limited, with most of the current approaches based on restoration of dopaminergic tone in the striatum. However, these do not alter disease course and do not treat the non-dopamine-dependent features of PD such as freezing of gait, cognitive impairment, and other non-motor features of the disorder, which often have the greatest impact on quality of life. As understanding of PD pathogenesis grows, novel therapeutic avenues are emerging. These include treatments that aim to control the symptoms of PD without the problematic side effects seen with currently available treatments and those that are aimed towards slowing pathology, reducing neuronal loss, and attenuating disease course. In this latter regard, there has been much interest in drug repurposing (the use of established drugs for a new indication), with many drugs being reported to affect PD-relevant intracellular processes. This approach offers an expedited route to the clinic, given that pharmacokinetic and safety data are potentially already available. In terms of better symptomatic therapies that are also regenerative, gene therapies and cell-based treatments are beginning to enter clinical trials, and developments in other neurosurgical strategies such as more nuanced deep brain stimulation approaches mean that the landscape of PD treatment is likely to evolve considerably over the coming years. In this review, we provide an overview of the novel therapeutic approaches that are close to, or are already in, clinical trials. 10.12688/f1000research.25634.1
    Safinamide in the treatment of Parkinson's disease. Müller Thomas Neurodegenerative disease management The deficiency pattern of neurotransmitters is heterogeneous in patients with Parkinson's disease. Consequence is an individual variable expression of motor and nonmotor features. They respond to agents with a broader spectrum of mode of actions, whereas dopamine substitution only targets impaired motor behavior. The pharmacological profile of safinamide includes reversible monoamine oxidase B inhibition and modulation of voltage-dependent sodium- and calcium channels with consecutive decline of glutamate release. Safinamide improves motor and nonmotor symptoms. Combination of safinamide with the catechol-O-methyltransferase inhibitor opicapone in one capsule is a promising future treatment alternative, which simplifies drug therapy in Parkinson's disease. Both agents complement each other in terms of application mode and efficacy on motor complications as adjuncts to levodopa therapy. 10.2217/nmt-2020-0017
    Impaired dopamine metabolism in Parkinson's disease pathogenesis. Masato Anna,Plotegher Nicoletta,Boassa Daniela,Bubacco Luigi Molecular neurodegeneration A full understanding of Parkinson's Disease etiopathogenesis and of the causes of the preferential vulnerability of nigrostriatal dopaminergic neurons is still an unsolved puzzle. A multiple-hit hypothesis has been proposed, which may explain the convergence of familial, environmental and idiopathic forms of the disease. Among the various determinants of the degeneration of the neurons in Substantia Nigra pars compacta, in this review we will focus on the endotoxicity associated to dopamine dyshomeostasis. In particular, we will discuss the relevance of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) in the catechol-induced neurotoxicity. Indeed, the synergy between the catechol and the aldehyde moieties of DOPAL exacerbates its reactivity, resulting in modification of functional protein residues, protein aggregation, oxidative stress and cell death. Interestingly, αSynuclein, whose altered proteostasis is a recurrent element in Parkinson's Disease pathology, is considered a preferential target of DOPAL modification. DOPAL triggers αSynuclein oligomerization leading to synapse physiology impairment. Several factors can be responsible for DOPAL accumulation at the pre-synaptic terminals, i.e. dopamine leakage from synaptic vesicles, increased rate of dopamine conversion to DOPAL by upregulated monoamine oxidase and decreased DOPAL degradation by aldehyde dehydrogenases. Various studies report the decreased expression and activity of aldehyde dehydrogenases in parkinsonian brains, as well as genetic variants associated to increased risk in developing the pathology. Thus, we discuss how the deregulation of these enzymes might be considered a contributing element in the pathogenesis of Parkinson's Disease or a down-stream effect. Finally, we propose that a better understanding of the impaired dopamine metabolism in Parkinson's Disease would allow a more refined patients stratification and the design of more targeted and successful therapeutic strategies. 10.1186/s13024-019-0332-6
    Dysregulated Interorganellar Crosstalk of Mitochondria in the Pathogenesis of Parkinson's Disease. Sironi Lara,Restelli Lisa Michelle,Tolnay Markus,Neutzner Albert,Frank Stephan Cells The pathogenesis of Parkinson's disease (PD), the second most common neurodegenerative disorder, is complex and involves the impairment of crucial intracellular physiological processes. Importantly, in addition to abnormal α-synuclein aggregation, the dysfunction of various mitochondria-dependent processes has been prominently implicated in PD pathogenesis. Besides the long-known loss of the organelles' bioenergetics function resulting in diminished ATP synthesis, more recent studies in the field have increasingly focused on compromised mitochondrial quality control as well as impaired biochemical processes specifically localized to ER-mitochondria interfaces (such as lipid biosynthesis and calcium homeostasis). In this review, we will discuss how dysregulated mitochondrial crosstalk with other organelles contributes to PD pathogenesis. 10.3390/cells9010233
    Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson's Disease. Wang Rui,Sun Hongyang,Wang Guanghui,Ren Haigang International journal of molecular sciences Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The neuropathological features of PD are selective and progressive loss of dopaminergic neurons in the substantia nigra pars compacta, deficiencies in striatal dopamine levels, and the presence of intracellular Lewy bodies. Interactions among aging and genetic and environmental factors are considered to underlie the common etiology of PD, which involves multiple changes in cellular processes. Recent studies suggest that changes in lysine acetylation and deacetylation of many proteins, including histones and nonhistone proteins, might be tightly associated with PD pathogenesis. Here, we summarize the changes in lysine acetylation of both histones and nonhistone proteins, as well as the related lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), in PD patients and various PD models. We discuss the potential roles and underlying mechanisms of these changes in PD and highlight that restoring the balance of lysine acetylation/deacetylation of histones and nonhistone proteins is critical for PD treatment. Finally, we discuss the advantages and disadvantages of different KAT/KDAC inhibitors or activators in the treatment of PD models and emphasize that SIRT1 and SIRT3 activators and SIRT2 inhibitors are the most promising effective therapeutics for PD. 10.3390/ijms21197182
    The Emerging Role of /Miro1 in the Pathogenesis of Parkinson's Disease. Grossmann Dajana,Berenguer-Escuder Clara,Chemla Axel,Arena Giuseppe,Krüger Rejko Frontiers in neurology The expected increase in prevalence of Parkinson's disease (PD) as the most common neurodegenerative movement disorder over the next years underscores the need for a better understanding of the underlying molecular pathogenesis. Here, first insights provided by genetics over the last two decades, such as dysfunction of molecular and organellar quality control, are described. The mechanisms involved relate to impaired intracellular calcium homeostasis and mitochondrial dynamics, which are tightly linked to the cross talk between the endoplasmic reticulum (ER) and mitochondria. A number of proteins related to monogenic forms of PD have been mapped to these pathways, i.e., PINK1, Parkin, LRRK2, and α-synuclein. Recently, Miro1 was identified as an important player, as several studies linked Miro1 to mitochondrial quality control by PINK1/Parkin-mediated mitophagy and mitochondrial transport. Moreover, Miro1 is an important regulator of mitochondria-ER contact sites (MERCs), where it acts as a sensor for cytosolic calcium levels. The involvement of Miro1 in the pathogenesis of PD was recently confirmed by genetic evidence based on the first PD patients with heterozygous mutations in /Miro1. Patient-based cellular models from /Miro1 mutation carriers showed impaired calcium homeostasis, structural alterations of MERCs, and increased mitochondrial clearance. To account for the emerging role of Miro1, we present a comprehensive overview focusing on the role of this protein in PD-related neurodegeneration and highlighting new developments in our understanding of Miro1, which provide new avenues for neuroprotective therapies for PD patients. 10.3389/fneur.2020.00587
    TLR7/8 in the Pathogenesis of Parkinson's Disease. Campolo Michela,Filippone Alessia,Biondo Carmelo,Mancuso Giuseppe,Casili Giovanna,Lanza Marika,Cuzzocrea Salvatore,Esposito Emanuela,Paterniti Irene International journal of molecular sciences Neuroinflammation and autoimmune mechanisms have a key part in the pathogenesis of Parkinson's disease (PD). Therefore, we evaluated the role of Toll-like receptors (TLRs) as a link between inflammation and autoimmunity in PD. An in vivo model of PD was performed by administration of 1-metil 4-fenil 1,2,3,6-tetraidro-piridina (MPTP) at the dose of 20 mg/kg every 2 h for a total administration of 80/kg, both in single Knock Out (KO) mice for TLR7, TLR 8, and TLR9 and in double KO mice for TLR 7/8. All animals were compared with WT animals used as a control group. All animals were sacrificed after 7 days form the first administration of MPTP. The genetic absence of TLR 7 and 8 modified the PD pathway, increasing the immunoreactivity for TH and DAT compared to PD groups and decreasing microglia and astrocytes activation. Moreover, the deletion of TLR7 and TLR8 significantly reduced T-cell infiltration in the substantia nigra and lymph nodes, suggesting a reduction of T-cell activation. Therefore, our result highlights a possibility that an immunotherapy approach, by using a dual antagonist of TLR 7 and 8, could be considered as a possible target to develop new therapies for Parkinson diseases. 10.3390/ijms21249384
    The Potential Role of SARS-COV-2 in the Pathogenesis of Parkinson's Disease. Chaná-Cuevas Pedro,Salles-Gándara Philippe,Rojas-Fernandez Alejandro,Salinas-Rebolledo Constanza,Milán-Solé Anna Frontiers in neurology Considering their current burden and epidemiological projections, nowadays Parkinson's disease and the COVID-19 pandemic are two key health problems. There is evidence of the pathogenic role of neurotropic viruses in neurodegenerative diseases and coronaviruses are neurotropic, with some of them selectively targeting the basal ganglia. Moreover, some authors demonstrated the longevity of these viruses in the affected cells of the nervous system for long periods. Coronavirus was detected in brain autopsies and SARS-CoV-2 has been isolated from the CSF of affected patients. The marked inflammatory response in some particular patients with COVID-19 with a consequent increase of pro-inflammatory cytokines is considered a prognostic factor. Immunologic changes are observed in patients with Parkinson's disease, possibly having a role in its pathogenesis. A dynamic pro-inflammatory state accompanies α-synuclein accumulation and the development and progression of neurodegeneration. Also, some viral infectious diseases might have a role as triggers, generating a cross autoimmune reaction against α-synuclein. In the past Coronaviruses have been related to Parkinson's disease, however, until now the causal role of these viruses is unknown. In this paper, our focus is to assess the potential relationship between SARS-CoV-2 infection and Parkinson's disease. 10.3389/fneur.2020.01044
    Gut Microbiota and Metabolome Alterations Associated with Parkinson's Disease. Vascellari Sarah,Palmas Vanessa,Melis Marta,Pisanu Silvia,Cusano Roberto,Uva Paolo,Perra Daniela,Madau Veronica,Sarchioto Marianna,Oppo Valentina,Simola Nicola,Morelli Micaela,Santoru Maria Laura,Atzori Luigi,Melis Maurizio,Cossu Giovanni,Manzin Aldo mSystems Parkinson's disease is a neurodegenerative disorder characterized by the accumulation of intracellular aggregates of misfolded alpha-synuclein along the cerebral axis. Several studies report the association between intestinal dysbiosis and Parkinson's disease, although a cause-effect relationship remains to be established. Herein, the gut microbiota composition of 64 Italian patients with Parkinson's disease and 51 controls was determined using a next-generation sequencing approach. A real metagenomics shape based on gas chromatography-mass spectrometry was also investigated. The most significant changes within the Parkinson's disease group highlighted a reduction in bacterial taxa, which are linked to anti-inflammatory/neuroprotective effects, particularly in the family and key members, such as , and The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. Changes were seen in lipids (linoleic acid, oleic acid, succinic acid, and sebacic acid), vitamins (pantothenic acid and nicotinic acid), amino acids (isoleucine, leucine, phenylalanine, glutamic acid, and pyroglutamic acid) and other organic compounds (cadaverine, ethanolamine, and hydroxy propionic acid). Most modified metabolites strongly correlated with the abundance of members belonging to the family, suggesting that these gut bacteria correlate with altered metabolism rates in Parkinson's disease. To our knowledge, this is one of the few studies thus far that correlates the composition of the gut microbiota with the direct analysis of fecal metabolites in patients with Parkinson's disease. Overall, our data highlight microbiota modifications correlated with numerous fecal metabolites. This suggests that Parkinson's disease is associated with gut dysregulation that involves a synergistic relationship between gut microbes and several bacterial metabolites favoring altered homeostasis. Interestingly, a reduction of short-chain fatty acid (SCFA)-producing bacteria influenced the shape of the metabolomics profile, affecting several metabolites with potential protective effects in the Parkinson group. On the other hand, the extensive impact that intestinal dysbiosis has at the level of numerous metabolic pathways could encourage the identification of specific biomarkers for the diagnosis and treatment of Parkinson's disease, also in light of the effect that specific drugs have on the composition of the intestinal microbiota. 10.1128/mSystems.00561-20
    Parkinson's disease and translational research. Dinter Elisabeth,Saridaki Theodora,Diederichs Leonie,Reichmann Heinz,Falkenburger Björn H Translational neurodegeneration Parkinson's disease (PD) is diagnosed when patients exhibit bradykinesia with tremor and/or rigidity, and when these symptoms respond to dopaminergic medications. Yet in the last years there was a greater recognition of additional aspects of the disease including non-motor symptoms and prodromal states with associated pathology in various regions of the nervous system. In this review we discuss current concepts of two major alterations found during the course of the disease: cytoplasmic aggregates of the protein α-synuclein and the degeneration of dopaminergic neurons. We provide an overview of new approaches in this field based on current concepts and latest literature. In many areas, translational research on PD has advanced the understanding of the disease but there is still a need for more effective therapeutic options based on the insights into the basic biological phenomena. 10.1186/s40035-020-00223-0
    The role of natural killer cells in Parkinson's disease. Earls Rachael H,Lee Jae-Kyung Experimental & molecular medicine Numerous lines of evidence indicate an association between sustained inflammation and Parkinson's disease, but whether increased inflammation is a cause or consequence of Parkinson's disease remains highly contested. Extensive efforts have been made to characterize microglial function in Parkinson's disease, but the role of peripheral immune cells is less understood. Natural killer cells are innate effector lymphocytes that primarily target and kill malignant cells. Recent scientific discoveries have unveiled numerous novel functions of natural killer cells, such as resolving inflammation, forming immunological memory, and modulating antigen-presenting cell function. Furthermore, natural killer cells are capable of homing to the central nervous system in neurological disorders that exhibit exacerbated inflammation and inhibit hyperactivated microglia. Recently, a study demonstrated that natural killer cells scavenge alpha-synuclein aggregates, the primary component of Lewy bodies, and systemic depletion of natural killer cells results in exacerbated neuropathology in a mouse model of alpha-synucleinopathy, making them a highly relevant cell type in Parkinson's disease. However, the exact role of natural killer cells in Parkinson's disease remains elusive. In this review, we introduce the systemic inflammatory process seen in Parkinson's disease, with a particular focus on the direct and indirect modulatory capacity of natural killer cells in the context of Parkinson's disease. 10.1038/s12276-020-00505-7