logo logo
Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Chikara Shireen,Nagaprashantha Lokesh Dalasanur,Singhal Jyotsana,Horne David,Awasthi Sanjay,Singhal Sharad S Cancer letters Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment. 10.1016/j.canlet.2017.11.002
Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against HO induced cytotoxicity in lung and liver cells. Kumar A D Naveen,Bevara Ganesh Babu,Kaja Laxmi Koteswaramma,Badana Anil Kumar,Malla Rama Rao BMC complementary and alternative medicine BACKGROUND:Hydrogen peroxide is continuously generated in living cells through metabolic pathways and serves as a source of reactive oxygen species. Beyond the threshold level, it damages cells and causes several human disorders, including cancer. METHODS:Effect of isolated 3-O-methyl quercetin and kaempferol on HO induced cytotoxicity, ROS formation, plasma membrane damage, loss of mitochondrial membrane potential, DNA damage was evaluated in normal liver and lung cells. The RT-PCR analysis used to determine Nrf 2 gene expression. Calorimetric ELISA was used to determine Nrf2 and p-38 levels. Expression of SOD and catalase was analyzed by Western blot analysis. RESULTS:The present study isolated 3-O-methyl quercetin and kaempferol from the stem bark. They protected normal lung and liver cells from HO induced cytotoxicity, ROS formation, membrane damage and DNA damage. Pre-treatment with 3-O-methyl quercetin and kaempferol caused translocation of Nrf2 from cytosol to nucleus. It also increased expression of p-p38, Nrf2, SOD and catalase in HO treated lung and liver cells. CONCLUSION:The flavonoids isolated from S. anacardium significantly reduced HO induced stress and increased expression of Nrf2, catalase and superoxide dismutase-2 indicating cytoprotective nature of 3-O-methylquercetin and kaempferol. 10.1186/s12906-016-1354-z
Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Chaiprasongsuk Anyamanee,Onkoksoong Tasanee,Pluemsamran Thanyawan,Limsaengurai Saowalak,Panich Uraiwan Redox biology Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8J/cm(2)) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. 10.1016/j.redox.2015.12.006
Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Tanigawa Shunsuke,Fujii Makoto,Hou De-Xing Free radical biology & medicine Polyphenols are characterized by the presence of more than one phenolic group and are widely distributed in many fruits and vegetables. They possess antioxidant properties and interact with cellular defense systems through the antioxidant-responsive element/electrophile-responsive element (ARE/EpRE) although the precise mechanism by which polyphenols influence transcription factor complexes to target ARE is poorly understood. In the present study, we chose a typical polyphenol, quercetin, to investigate the mechanism in human HepG2 cells. Quercetin enhanced the ARE binding activity and Nrf2-mediated transcription activity. Molecular evidence revealed that quercetin not only up-regulated the expression of Nrf2 mRNA and protein, but also stabilized Nrf2 protein by inhibiting the ubiquitination and proteasomal turnover of Nrf2. At the same time, quercetin markedly reduced the level of Keap1 protein in posttranslational levels through the formation of modified Keap1 protein, rather than 26S proteasome-dependent degradation mechanisms, without affecting the dissociation of Keap1-Nrf2. Silencing Keap1 using Keap1 siRNA significantly increased the Nrf2-dependent ARE activity, whereas silencing Nrf2 using Nrf2 siRNA markedly reduced the ARE activity under both baseline and quercetin-induced conditions. Thus, we conclude that the pathway of quercetin-induced ARE activity involves up-regulation of Nrf2 through the regulation of both transcription and posttranscription sites and repression of Keap1 by affecting the posttranscription site, revealing some substantial differences between oxidative inducers. Thus, the findings provide an insight into the mechanisms underlying polyphenolic compounds in cytoprotection and cancer chemoprevention. 10.1016/j.freeradbiomed.2007.02.017
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? L Suraweera Tharindu,Rupasinghe H P Vasantha,Dellaire Graham,Xu Zhaolin Antioxidants (Basel, Switzerland) The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically. 10.3390/antiox9100973
Taxifolin curbs NF-κB-mediated Wnt/β-catenin signaling via up-regulating Nrf2 pathway in experimental colon carcinogenesis. Manigandan Krishnan,Manimaran Dharmar,Jayaraj Richard L,Elangovan Namasivayam,Dhivya Velumani,Kaphle Anubhav Biochimie Aberrations in homeostasis mechanisms including Nrf2, inflammatory, and Wnt/β-catenin signaling are the major causative factors implicated in colon cancer development. Hence blocking these pathways through natural interventions pave a new channel for colon cancer prevention. Earlier, we reported the chemopreventive effect of taxifolin (TAX) against colon carcinogenesis. In this study, we aimed to understand the ability of TAX, to modulate the Nrf2, inflammatory and Wnt/β-catenin cascades on 1, 2-dimethyl hydrazine (DMH)-induced mouse colon carcinogenesis. In addition, in silico molecular docking studies were performed to evaluate the binding affinity between TAX and target proteins (Nrf2, β-catenin, and TNF-α). We perceived that the increase of serum marker enzyme levels (CEA and LDH) and mast cell infiltration that occurs in the presence of DMH is inverted after TAX treatment. Immunoblot expression and docking analysis revealed that TAX could induce antioxidant response pathway, confirming the enhanced level of Nrf2 protein. It also inhibited NF-κB and Wnt signaling by down-regulating the levels of regulatory metabolites such as TNF-α, COX-2, β-catenin, and Cyclin-D1. Collectively, results of our hypothesis shown that TAX is an effective chemopreventive agent capable of modulating inflammatory, Wnt and antioxidant response pathway proteins in tumor microenvironment which explicating its anticancer property. 10.1016/j.biochi.2015.10.014
Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells. Chemico-biological interactions The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells. 10.1016/j.cbi.2016.10.015
The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells. Mostafavi-Pour Zohreh,Ramezani Fatemeh,Keshavarzi Fatemeh,Samadi Nasser Oncology letters The balance between the production and elimination of reactive oxygen species (ROS) is essential in determining whether cells survive or undergo apoptosis. Nuclear factor erythroid 2-related factor 2 (Nrf2) may act as a sensor for electrophilic stress, thus regulating the intracellular antioxidant response. The present study investigated the role of vitamin C (VC) and quercetin (Q) in the induction of Nrf2-mediated oxidative stress in cancer cells. An MTT assay was conducted to examine the anti-proliferative effects of VC and Q. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to determine the messenger RNA (mRNA) and protein expression of Nrf2, respectively. The activity of nicotinamide adenine dinucleotide phosphate dehydrogenase quinone 1, heme oxygenase 1, glutathione peroxidase, glutathione reductase and reduced glutathione were measured by spectrophotometric analysis. Intracellular generation of ROS was determined using 2'-7'-dichlorodihydrofluorescein diacetate fluorescent probes. The results demonstrated that the cytotoxicity (50% inhibitory concentration) of VC and Q were 271.6-480.1 and 155.1-232.9 µM, respectively. Additionally, there was a significant decrease in the expression of Nrf2 mRNA and protein levels following the treatment of breast cancer cells with VC and Q (P=0.024). Following treatment with VC and Q, the nuclear/cytosolic Nrf2 ratio was reduced by 1.7-fold in MDA-MB 231 cells, 2-fold in MDA-MB 468 cells, 1.4-fold in MCF-7 cells and 1.2 fold in A549 cells. Sequential treatment with VC and Q decreased endogenous production of ROS in a dose-dependent manner (P=0.027). The results of the current study suggest that VC and Q treatment may be developed as an adjuvant for patients with cancer and overexpression of Nrf2. 10.3892/ol.2017.5619
Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Granado-Serrano Ana Belén,Martín María Angeles,Bravo Laura,Goya Luis,Ramos Sonia Chemico-biological interactions Dietary flavonoid quercetin has been suggested as a cancer chemopreventive agent, but the mechanisms of action remain unclear. This study investigated the influence of quercetin on p38-MAPK and the potential regulation of the nuclear transcription factor erythroid-2p45-related factor (Nrf2) and the cellular antioxidant/detoxifying defense system related to glutathione (GSH) by p38 in HepG2 cells. Incubation of HepG2 cells with quercetin at a range of concentrations (5-50μM) for 4 or 18h induced a differential effect on the modulation of p38 and Nrf2 in HepG2 cells, 50μM quercetin showed the highest activation of p38 at 4h of treatment and values of p38 similar to those of control cells after 18 h of incubation, together with the inhibition of Nrf2 at both incubation times. Quercetin (50μM) induced a time-dependent activation of p38, which was in concert with a transient stimulation of Nrf2 to provoke its inhibition afterward. Quercetin also increased GSH content, mRNA levels of glutamylcysteine-synthetase (GCS) and expression and/or activity of glutathione-peroxidase, glutathione-reductase and GCS after 4h of incubation, and glutathione-S-transferase after 18h of exposure. Further studies with the p38 specific inhibitor SB203580 showed that the p38 blockage restored the inhibited Nrf2 transcription factor and the enzymatic expression and activity of antioxidant/detoxificant enzymes after 4h exposure. In conclusion, p38-MAPK is involved in the mechanisms of the cell response to quercetin through the modulation of Nrf2 and glutathione-related enzymes in HepG2 cells. 10.1016/j.cbi.2011.12.005
Chemoprevention of Prostate Cancer Cells by Vitamin C plus Quercetin: role of Nrf2 in Inducing Oxidative Stress. Abbasi Ali,Mostafavi-Pour Zohreh,Amiri Ahmad,Keshavarzi Fatemeh,Nejabat Negar,Ramezani Fatemeh,Sardarian Ahmadreza,Zal Fatemeh Nutrition and cancer To assess the effect of sequential treatment with Vitamin C (VC) and Quercetin (Q) on Nrf2-related oxidative stress in PC3 and DU145 cells, viability was measured by MTT assay. Intracellular ROS levels were determined, using 2'-7'-dichlorodihydrofluorescein diacetate fluorescent as a probe. Nrf2 gene expression was investigated by quantitative reverse transcription polymerase chain reaction, and Nrf2 protein levels were defined by western blot analysis. The activity of glutathione peroxidase (GPx), glutathione reductase (GR), nicotinamide adenine dinucleotide phosphate dehydrogenase quinone 1 (NQO1) and hemeoxygenase 1 (HO-1) enzymes were measured. The IC values for VC + Q were 263.03-372.1 µM and 144.2-194.1 µM respectively and 200 µM VC + 50 µM Q (dose no.1) and 100 µM VC + 75 µM Q (dose no.2) were selected. Sequential treatment of PC3 cells led to a significant reduction of Nrf2 mRNA expression and protein levels in addition to a significant reduction of GPx, GR and NQO1 enzymatic activity. Although the data was slightly different for DU145 cells after the treatments, in terms of Nrf2 gene expression, we obtained the same results. Our study revealed the significant effects of sequential treatment with VC + Q on Nrf2 suppression in prostate cancer cells. 10.1080/01635581.2020.1819346
Hepatic Nrf2 expression is altered by quercetin supplementation in X-irradiated rats. Marina Raquel,González Paquita,Ferreras M Carmen,Costilla Serafín,Barrio Juan-Pablo Molecular medicine reports Whole-body irradiation has been associated with liver function alterations. Ionizing radiation exposure increases oxidative stress and antioxidants can activate transcription of antioxidant target genes. In the present study, modifications of the liver antioxidant system were evaluated at 7 and 30 days following sub-lethal whole-body X-irradiation in male Wistar rats, which were intragastrically supplemented with quercetin or control solvent for 4 days prior to and 6 days following irradiation. Animal groups were as follows: CS, control, solvent-supplemented; CQ, control, quercetin-supplemented; RS, irradiated, solvent-supplemented; and RQ, irradiated, quercetin-supplemented. After 7 days, liver tissue from RS animals demonstrated marked hydropic panlobular degeneration with Mallory bodies in ballooning hepatocytes. These changes were mostly reversed in RQ rats. Lipid peroxidation in addition to copper/zinc superoxide dismutase (Cu/Zn-SOD), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) protein expression levels were all increased by X-irradiation, but significantly decreased by quercetin supplementation. Catalase (CAT) and NAD(P)H:quinone oxidoreductase 1 (NQO1) expression levels remained high in irradiated rats regardless of quercetin supplementation. After 30 days, the liver from RS animals had small portal infiltrates and diffuse cytoplasmic vacuolization, with reduced lipid peroxidation and reduced expression levels of CAT, NQO1, Nrf2 and Keap1, but consistently elevated Cu/Zn-SOD expression. RQ animals indicated reduced expression levels of Nrf2 and Keap1 30 days after irradiation. The present study demonstrated a quercetin-induced reduction of the oxidative stress-associated increase in Nrf2 expression that may be useful for preventing cancer cell survival in response to ionizing radiation exposure. 10.3892/mmr.2014.2741
The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Saw Constance Lay Lay,Guo Yue,Yang Anne Yuqing,Paredes-Gonzalez Ximena,Ramirez Christina,Pung Douglas,Kong Ah-Ng Tony Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations. 10.1016/j.fct.2014.07.038
Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells. Molecules and cells NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2-upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-G0/G1 peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM. 10.14348/molcells.2015.2268