logo logo
Individual Dopaminergic Neurons of Lamprey SNc/VTA Project to Both the Striatum and Optic Tectum but Restrict Co-release of Glutamate to Striatum Only. von Twickel Arndt,Kowatschew Daniel,Saltürk Mehmet,Schauer Maria,Robertson Brita,Korsching Sigrun,Walkowiak Wolfgang,Grillner Sten,Pérez-Fernández Juan Current biology : CB Dopaminergic neurons in the substantia nigra (SNc) innervate both striatum and the superior colliculus in mammals, as well as its homolog the optic tectum in lampreys, belonging to the oldest group of living vertebrates [1-3]. In the lamprey, we have previously shown that the same neuron sends axonal branches to both striatum and the optic tectum [3]. Here, we show that most neurons in the lamprey SNc and ventral tegmental area (VTA) (also referred to as the nucleus of the posterior tuberculum) express not only tyrosine hydroxylase (TH), in lamprey a marker of dopaminergic neurons [4], but also the vesicular glutamate transporter (vGluT), suggesting that glutamate is a co-transmitter. Remarkably, the axonal branches that project to striatum elicit both dopaminergic and glutamatergic synaptic effects on striatal neurons, whereas the axonal projections to the optic tectum only evoke dopaminergic effects. Thus, axonal branches from the same neuron can use two transmitters in one branch and only one in the other. Previous studies suggest that, along an individual dopaminergic axon, there can be microdomains of either TH or vGluT [5-8]. In addition, the present results demonstrate that entire axonal branches to one target structure can differ from that of branches to another target, both originating from the same dopamine neuron. This implies that a given dopamine neuron can exert different effects on two different target structures. The combined release of dopamine and glutamate may be appropriate in striatum, whereas the effects exerted on the tectal motor center may be better served with a selective dopaminergic modulation. 10.1016/j.cub.2019.01.004
Vesicular Glutamate Uptake. Ueda Tetsufumi Advances in neurobiology Glutamate is an excitatory neurotransmitter widely used in the vertebrate central nervous systems. The synaptic transmission process is characterized by three steps: (1) presynaptic vesicular transmitter uptake, (2) presynaptic release, and (3) postsynaptic receptor activation. Presynaptic vesicular glutamate uptake plays an initial pivotal role in glutamate transmission by concentrating glutamate in the vesicular lumen prior to its release. This active glutamate transport harnesses energy derived from ATP hydrolysis, and intra- or extravesicular chloride, and is highly specific to glutamate. The uptake system consists of a vesicular glutamate transporter (VGLUT) and v-type proton-pump ATPase, which generates an electrochemical proton gradient, the driving force of the transport. The major source of ATP is likely to be supplied by glycolytic vesicle-bound enzymes, glyceraldehyde 3-phosphate dehydrogenase, and 3-phosphoglycerate kinase, rather than by mitochondrial ATP synthase. The VGLUT substrate glutamate is proposed to be synthesized by vesicle-bound aspartate amino transferase from α-ketoglutarate, not directly from glutamine. VGLUT has three isoforms, and gaged by their distributions they perform different physiological functions. The mechanism and regulation of vesicular glutamate uptake are discussed. The pharmacology of vesicular glutamate uptake is a developing field of inquiry. 10.1007/978-3-319-45096-4_7
Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Zhang Fu-Xing,Ge Shun-Nan,Dong Yu-Lin,Shi Juan,Feng Yu-Peng,Li Yang,Li Yun-Qing,Li Jin-Lian Progress in neurobiology In nervous system, glutamate transmission is crucial for centripetal conveyance and cortical perception of sensory signals of different modalities, which necessitates vesicular glutamate transporters 1-3 (VGLUT 1-3), the three homologous membrane-bound protein isoforms, to load glutamate into the presysnaptic vesicles. These VGLUTs, especially VGLUT1 and VGLUT2, selectively label and define functionally distinct neuronal subpopulations at each relay level of the neural hierarchies comprising spinal and trigeminal sensory systems. In this review, by scrutinizing each structure of the organism's fundamental hierarchies including dorsal root/trigeminal ganglia, spinal dorsal horn/trigeminal sensory nuclear complex, somatosensory thalamic nuclei and primary somatosensory cortex, we summarize and characterize in detail within each relay the neuronal clusters expressing distinct VGLUT protein/transcript isoforms, with respect to their regional distribution features (complementary distribution in some structures), axonal terminations/peripheral innervations and physiological functions. Equally important, the distribution pattern and characteristics of VGLUT1/VGLUT2 axon terminals within these structures are also epitomized. Finally, the correlation of a particular VGLUT isoform and its physiological role, disclosed thus far largely via studying the peripheral receptors, is generalized by referring to reports on global and conditioned VGLUT-knockout mice. Also, researches on VGLUTs relating to future direction are tentatively proposed, such as unveiling the elusive differences between distinct VGLUTs in mechanism and/or pharmacokinetics at ionic/molecular level, and developing VGLUT-based pain killers. 10.1016/j.pneurobio.2018.09.006
VGluT3⁺ primary afferents play distinct roles in mechanical and cold hypersensitivity depending on pain etiology. Draxler Peter,Honsek Silke Doris,Forsthuber Liesbeth,Hadschieff Viktoria,Sandkühler Jürgen The Journal of neuroscience : the official journal of the Society for Neuroscience Sensory nerve fibers differ not only with respect to their sensory modalities and conduction velocities, but also in their relative roles for pain hypersensitivity. It is presently largely unknown which types of sensory afferents contribute to various forms of neuropathic and inflammatory pain hypersensitivity. Vesicular glutamate transporter 3-positive (VGluT3(+)) primary afferents, for example, have been implicated in mechanical hypersensitivity after inflammation, but their role in neuropathic pain remains under debate. Here, we investigated a possible etiology-dependent contribution of VGluT3(+) fibers to mechanical and cold hypersensitivity in different models of inflammatory and neuropathic pain. In addition to VGluT3(-/-) mice, we used VGluT3-channelrhodopsin 2 mice to selectively stimulate VGluT3(+) sensory afferents by blue light, and to assess light-evoked behavior in freely moving mice. We show that VGluT3(-/-) mice develop reduced mechanical hypersensitivity upon carrageenan injection. Both mechanical and cold hypersensitivity were reduced in VGluT3(-/-) mice in neuropathic pain evoked by the chemotherapeutic oxaliplatin, but not in the chronic constriction injury (CCI) model of the sciatic nerve. Further, we provide direct evidence that, despite not mediating painful stimuli in naive mice, activation of VGluT3(+) sensory fibers by light elicits pain behavior in the oxaliplatin but not the CCI model. Immunohistochemical and electrophysiological data support a role of transient receptor potential melastatin 8-mediated facilitation of synaptic strength at the level of the dorsal horn as an underlying mechanism. Together, we demonstrate that VGluT3(+) fibers contribute in an etiology-dependent manner to the development of mechano-cold hypersensitivity. 10.1523/JNEUROSCI.2157-14.2014
Low-Threshold Mechanosensitive VGLUT3-Lineage Sensory Neurons Mediate Spinal Inhibition of Itch by Touch. Sakai Kent,Sanders Kristen M,Lin Shing-Hong,Pavlenko Darya,Funahashi Hideki,Lozada Taisa,Hao Shuanglin,Chen Chih-Cheng,Akiyama Tasuku The Journal of neuroscience : the official journal of the Society for Neuroscience Innocuous mechanical stimuli, such as rubbing or stroking the skin, relieve itch through the activation of low-threshold mechanoreceptors. However, the mechanisms behind this inhibition remain unknown. We presently investigated whether stroking the skin reduces the responses of superficial dorsal horn neurons to pruritogens in male C57BL/6J mice. Single-unit recordings revealed that neuronal responses to chloroquine were enhanced during skin stroking, and this was followed by suppression of firing below baseline levels after the termination of stroking. Most of these neurons additionally responded to capsaicin. Stroking did not suppress neuronal responses to capsaicin, indicating state-dependent inhibition. Vesicular glutamate transporter 3 (VGLUT3)-lineage sensory nerves compose a subset of low-threshold mechanoreceptors. Stroking-related inhibition of neuronal responses to chloroquine was diminished by optogenetic inhibition of VGLUT3-lineage sensory nerves in male and female / mice. Conversely, in male and female mice, optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited firing responses of spinal neurons to pruritogens after the termination of stimulation. This inhibition was nearly abolished by spinal delivery of the κ-opioid receptor antagonist nor-binaltorphimine dihydrochloride, but not the neuropeptide Y receptor Y1 antagonist BMS193885. Optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited pruritogen-evoked scratching without affecting mechanical and thermal pain behaviors. Therefore, VGLUT3-lineage sensory nerves appear to mediate inhibition of itch by tactile stimuli. Rubbing or stroking the skin is known to relieve itch. We investigated the mechanisms behind touch-evoked inhibition of itch in mice. Stroking the skin reduced the activity of itch-responsive spinal neurons. Optogenetic inhibition of VGLUT3-lineage sensory nerves diminished stroking-evoked inhibition, and optogenetic stimulation of VGLUT3-lineage nerves inhibited pruritogen-evoked firing. Together, our results provide a mechanistic understanding of touch-evoked inhibition of itch. 10.1523/JNEUROSCI.0091-20.2020
Dysregulation of EAAT2 and VGLUT2 Spinal Glutamate Transports via Histone Deacetylase 2 (HDAC2) Contributes to Paclitaxel-induced Painful Neuropathy. Wang Xiao-Min,Gu Pan,Saligan Leorey,Iadarola Michael,Wong Stanley Sau Ching,Ti Lian Kah,Cheung Chi Wai Molecular cancer therapeutics Effective treatments for chemotherapy-induced peripheral neuropathy (CIPN) remain unavailable. Given the significance of spinal cord glutamate transporters in neuronal plasticity and central sensitization, this study investigated the role of excitatory amino acid transporter 2 (EAAT2) and vesicular-glutamate transporter 2 (VGLUT2) in the development of paclitaxel-induced painful neuropathy. Paclitaxel (2 mg/kg, i.p., cumulative dose 8 mg/kg) induced long-lasting mechanical allodynia (>28 days) with increased glutamate concentration and decreased EAAT2 expression with no changes in GABA/glycine or VGAT (vesicular GABA transporter) in rat spinal dorsal horn. VGLUT2 expression was upregulated and coexpressed with enhanced synaptophysin, characterizing nociceptive afferent sprouting and new synapse formation of glutamatergic neurons in the spinal cord dorsal horn. HDAC2 and transcription factor YY1 were also upregulated, and their interaction and colocalization were confirmed following paclitaxel treatment using co-immunoprecipitation. Inhibition or knockdown of HDAC2 expression by valproic acid, BRD6688, or HDAC2 siRNA not only attenuated paclitaxel-induced mechanical allodynia but also suppressed HDAC2 upregulation, glutamate accumulation, and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction. These findings indicate that loss of the balance between glutamate release and reuptake due to dysregulation EAAT2/VGLUT2/synaptophysin cascade in the spinal dorsal horn plays an important role in the development of paclitaxel-induced neuropathic pain. HDAC2/YY1 interaction as a complex appears essential in regulating this pathway, which can potentially be a therapeutic target to relieve CIPN by reversing central sensitization of spinal nociceptive neurons. 10.1158/1535-7163.MCT-20-0006
Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Wang Zhi-Tong,Yu Gang,Wang Hong-Sheng,Yi Shou-Pu,Su Rui-Bin,Gong Ze-Hui Brain research Vesicular glutamate transporters (VGLUTs) control the storage and release of glutamate, which plays a critical role in pain processing. The VGLUT2 isoform has been found to be densely distributed in the nociceptive pathways in supraspinal regions, and VGLUT2-deficient mice exhibit an attenuation of neuropathic pain; these results suggest a possible involvement of VGLUT2 in neuropathic pain. To further examine this, we investigated the temporal changes in VGLUT2 expression in different brain regions as well as changes in glutamate release from thalamic synaptosomes in spared nerve injury (SNI) mice. We also investigated the effects of a VGLUT inhibitor, Chicago Sky Blue 6B (CSB6B), on pain behavior, c-Fos expression, and depolarization-evoked glutamate release in SNI mice. Our results showed a significant elevation of VGLUT2 expression up to postoperative day 1 in the thalamus, periaqueductal gray, and amygdala, followed by a return to control levels. Consistent with the changes in VGLUT2 expression, SNI enhanced depolarization-induced glutamate release from thalamic synaptosomes, while CSB6B treatment produced a concentration-dependent inhibition of glutamate release. Moreover, intracerebroventricular administration of CSB6B, at a dose that did not affect motor function, attenuated mechanical allodynia and c-Fos up-regulation in pain-related brain areas during the early stages of neuropathic pain development. These results demonstrate that changes in the expression of supraspinal VGLUT2 may be a new mechanism relevant to the induction of neuropathic pain after nerve injury that acts through an aggravation of glutamate imbalance. 10.1016/j.brainres.2015.08.010
Mu opioid receptors on vGluT2-expressing glutamatergic neurons modulate opioid reward. Reeves Kaitlin C,Kube Megan J,Grecco Gregory G,Fritz Brandon M,Muñoz Braulio,Yin Fuqin,Gao Yong,Haggerty David L,Hoffman Hunter J,Atwood Brady K Addiction biology The role of Mu opioid receptor (MOR)-mediated regulation of GABA transmission in opioid reward is well established. Much less is known about MOR-mediated regulation of glutamate transmission in the brain and how this relates to drug reward. We previously found that MORs inhibit glutamate transmission at synapses that express the Type 2 vesicular glutamate transporter (vGluT2). We created a transgenic mouse that lacks MORs in vGluT2-expressing neurons (MORflox-vGluT2cre) to demonstrate that MORs on the vGluT2 neurons themselves mediate this synaptic inhibition. We then explored the role of MORs in vGluT2-expressing neurons in opioid-related behaviors. In tests of conditioned place preference, MORflox-vGluT2cre mice did not acquire place preference for a low dose of the opioid, oxycodone, but displayed conditioned place aversion at a higher dose, whereas control mice displayed preference for both doses. In an oral consumption assessment, these mice consumed less oxycodone and had reduced preference for oxycodone compared with controls. MORflox-vGluT2cre mice also failed to show oxycodone-induced locomotor stimulation. These mice displayed baseline withdrawal-like responses following the development of oxycodone dependence that were not seen in littermate controls. In addition, withdrawal-like responses in these mice did not increase following treatment with the opioid antagonist, naloxone. However, other MOR-mediated behaviors were unaffected, including oxycodone-induced analgesia. These data reveal that MOR-mediated regulation of glutamate transmission is a critical component of opioid reward. 10.1111/adb.12942
Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. Steinkellner Thomas,Zell Vivien,Farino Zachary J,Sonders Mark S,Villeneuve Michael,Freyberg Robin J,Przedborski Serge,Lu Wei,Freyberg Zachary,Hnasko Thomas S The Journal of clinical investigation Parkinson's disease is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). DA neurons in the ventral tegmental area are more resistant to this degeneration than those in the SNc, though the mechanisms for selective resistance or vulnerability remain poorly understood. A key to elucidating these processes may lie within the subset of DA neurons that corelease glutamate and express the vesicular glutamate transporter VGLUT2. Here, we addressed the potential relationship between VGLUT expression and DA neuronal vulnerability by overexpressing VGLUT in DA neurons of flies and mice. In Drosophila, VGLUT overexpression led to loss of select DA neuron populations. Similarly, expression of VGLUT2 specifically in murine SNc DA neurons led to neuronal loss and Parkinsonian behaviors. Other neuronal cell types showed no such sensitivity, suggesting that DA neurons are distinctively vulnerable to VGLUT2 expression. Additionally, most DA neurons expressed VGLUT2 during development, and coexpression of VGLUT2 with DA markers increased following injury in the adult. Finally, conditional deletion of VGLUT2 made DA neurons more susceptible to Parkinsonian neurotoxins. These data suggest that the balance of VGLUT2 expression is a crucial determinant of DA neuron survival. Ultimately, manipulation of this VGLUT2-dependent process may represent an avenue for therapeutic development. 10.1172/JCI95795
Coexpression of VGLUT1 and VGLUT2 in precerebellar neurons in the lateral reticular nucleus of the rat. Li Zhi-Hong,Zhang Chun-Kui,Qiao Yu,Ge Shun-Nan,Zhang Ting,Li Jin-Lian Brain research bulletin Vesicular glutamate transporter (VGLUT) 1 and VGLUT2 have been reported to distribute complementally in most brain regions and have been assumed to define distinct functional elements. Previous studies have shown the expression of VGLUT1 mRNA and VGLUT2 mRNA in the lateral reticular nucleus (LRN), a key precerebellar nucleus sending mossy fibers to the cerebellum. In the present study, we firstly examined the coexpression of VGLUT1 and VGLUT2 mRNA in the LRN of the rat by dual-fluorescence in situ hybridization. About 81.89 % of glutamatergic LRN neurons coexpressed VGLUT1 and VGLUT2 mRNA, and the others expressed either VGLUT1 or VGLUT2 mRNA. We then injected the retrograde tracer Fluogold (FG) into the vermal cortex of cerebellum, and observed that 95.01 % and 86.80 % of FG-labeled LRN neurons expressed VGLUT1 or VGLUT2 mRNA respectively. We further injected the anterograde tracer biotinylated dextran amine (BDA) into the LRN, and found about 82.6 % of BDA labeled axon terminals in the granular layer of cerebellar cortex showed both VGLUT1- and VGLUT2-immunoreactivities. Afterwards, we observed under electron microscopy that anterogradely labeled axon terminals showing immunoreactivity for VGLUT1 or VGLUT2 made asymmetric synapses with dendritic profiles of cerebellar neurons. Finally, we selectively down-regulated the expression of VGLUT1 mRNA or VGLUT2 mRNA by using viral vector mediated siRNA transfection and detected that the fine movements of the forelimb of rats were disturbed. These results indicated that LRN neurons coexpressing VGLUT1 and VGLUT2 project to the cerebellar cortex and these neurons might be critical in mediating the forelimb movements. 10.1016/j.brainresbull.2020.06.008
Paradoxical network excitation by glutamate release from VGluT3 GABAergic interneurons. eLife In violation of Dale's principle several neuronal subtypes utilize more than one classical neurotransmitter. Molecular identification of vesicular glutamate transporter three and cholecystokinin expressing cortical interneurons (CCKVGluT3INTs) has prompted speculation of GABA/glutamate corelease from these cells for almost two decades despite a lack of direct evidence. We unequivocally demonstrate CCKVGluT3INT-mediated GABA/glutamate cotransmission onto principal cells in adult mice using paired recording and optogenetic approaches. Although under normal conditions, GABAergic inhibition dominates CCKVGluT3INT signaling, glutamatergic signaling becomes predominant when glutamate decarboxylase (GAD) function is compromised. CCKVGluT3INTs exhibit surprising anatomical diversity comprising subsets of all known dendrite targeting CCK interneurons in addition to the expected basket cells, and their extensive circuit innervation profoundly dampens circuit excitability under normal conditions. However, in contexts where the glutamatergic phenotype of CCKVGluT3INTs is amplified, they promote paradoxical network hyperexcitability which may be relevant to disorders involving GAD dysfunction such as schizophrenia or vitamin B6 deficiency. 10.7554/eLife.51996
Regulating nociceptive transmission by VGluT2-expressing spinal dorsal horn neurons. Wang Li,Chen Shao-Rui,Ma Huijie,Chen Hong,Hittelman Walter N,Pan Hui-Lin Journal of neurochemistry Vesicular glutamate transporter-2 (VGluT2) mediates the uptake of glutamate into synaptic vesicles in neurons. Spinal cord dorsal horn interneurons are highly heterogeneous and molecularly diverse. The functional significance of VGluT2-expressing dorsal horn neurons in physiological and pathological pain conditions has not been explicitly demonstrated. Designer receptors exclusively activated by designer drugs (DREADDs) are a powerful chemogenetic tool to reversibly control neuronal excitability and behavior. Here, we used transgenic mice with Cre recombinase expression driven by the VGluT2 promoter, combined with the chemogenetic approach, to determine the contribution of VGluT2-expressing dorsal horn neurons to nociceptive regulation. Adeno-associated viral vectors expressing double-floxed Cre-dependent Gαq-coupled human M3 muscarinic receptor DREADD (hM3D)-mCherry or Gαi-coupled κ-opioid receptor DREADD (KORD)-IRES-mCitrine were microinjected into the superficial spinal dorsal horn of VGluT2-Cre mice. Immunofluorescence labeling showed that VGluT2 was predominantly expressed in lamina II excitatory interneurons. Activation of excitatory hM3D in VGluT2-expressing neurons with clozapine N-oxide caused a profound increase in neuronal firing and synaptic glutamate release. Conversely, activation of inhibitory KORD in VGluT2-expressing neurons with salvinorin B markedly inhibited neuronal activity and synaptic glutamate release. In addition, chemogenetic stimulation of VGluT2-expressing neurons increased mechanical and thermal sensitivities in naive mice, whereas chemogenetic silencing of VGluT2-expressing neurons reversed pain hypersensitivity induced by tissue inflammation and peripheral nerve injury. These findings indicate that VGluT2-expressing excitatory neurons play a crucial role in mediating nociceptive transmission in the spinal dorsal horn. Targeting glutamatergic dorsal horn neurons with inhibitory DREADDs may be a new strategy for treating inflammatory pain and neuropathic pain. 10.1111/jnc.14588
VGluT2 Expression in Dopamine Neurons Contributes to Postlesional Striatal Reinnervation. Kouwenhoven Willemieke M,Fortin Guillaume,Penttinen Anna-Maija,Florence Clélia,Delignat-Lavaud Benoît,Bourque Marie-Josée,Trimbuch Thorsten,Luppi Milagros Pereira,Salvail-Lacoste Alix,Legault Pascale,Poulin Jean-François,Rosenmund Christian,Awatramani Raj,Trudeau Louis-Éric The Journal of neuroscience : the official journal of the Society for Neuroscience A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity. We first took advantage of an neurotoxin model of Parkinson's disease and found that this caused an average 2.5-fold enhancement of mRNA in DA neurons. This could represent a reactivation of a developmental phenotype because using an intersectional genetic lineage-mapping approach, we find that >98% of DA neurons have a VGluT2 lineage. Expression of VGluT2 was detectable in most DA neurons at embryonic day 11.5 and was localized in developing axons. Finally, compatible with the possibility that enhanced VGluT2 expression in DA neurons promotes axonal outgrowth and reinnervation in the postlesional brain, we observed that DA neurons in female and male mice in which VGluT2 was conditionally removed established fewer striatal connections 7 weeks after a neurotoxin lesion. Thus, we propose here that the developmental expression of VGluT2 in DA neurons can be reactivated at postnatal stages, contributing to postlesional plasticity of dopaminergic axons. A small subset of dopamine neurons in the adult, healthy brain expresses vesicular glutamate transporter 2 (VGluT2) and thus releases glutamate as a second neurotransmitter in the striatum. This neurochemical phenotype appears to be plastic as exposure to neurotoxins, such as 6-OHDA or MPTP, that model certain aspects of Parkinson's disease pathophysiology, boosts VGluT2 expression in surviving dopamine neurons. Here we show that this enhanced VGluT2 expression in dopamine neurons drives axonal outgrowth and contributes to dopamine neuron axonal plasticity in the postlesional brain. A better understanding of the neurochemical changes that occur during the progression of Parkinson's disease pathology will aid the development of novel therapeutic strategies for this disease. 10.1523/JNEUROSCI.0823-20.2020