logo logo
Pro-contractile effects of perivascular fat in health and disease. Ramirez J G,O'Malley E J,Ho W S V British journal of pharmacology Perivascular adipose tissue (PVAT) is now recognized as an active player in vascular homeostasis. The expansion of PVAT in obesity and its possible role in vascular dysfunction have attracted much interest. In terms of the regulation of vascular tone and blood pressure, PVAT has been shown to release vasoactive mediators, for instance, angiotensin peptides, reactive oxygen species, chemokines and cytokines. The secretory profile of PVAT is altered by obesity, hypertension and other cardiovascular diseases, leading to an imbalance between its pro-contractile and anti-contractile effects. PVAT adipocytes represent an important source of the mediators, but infiltrating immune cells may become more important under conditions of hypoxia and inflammation. This review describes recent advances in the effects of PVAT on the regulation of vascular tone, highlighting the evidence for a pro-contractile action in health and disease. The role of the endothelium, vascular smooth muscle, immune cells and probably perivascular nerves in PVAT function is also discussed. LINKED ARTICLES:This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc. 10.1111/bph.13767
Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet: role of perivascular adipose tissue. Sena Cristina M,Pereira Ana,Fernandes Rosa,Letra Liliana,Seiça Raquel M British journal of pharmacology BACKGROUND AND PURPOSE:Adiponectin, the most abundant peptide secreted by adipocytes, is involved in the regulation of energy metabolism and vascular physiology. Here, we have investigated the effects of exogenous administration of adiponectin on metabolism, vascular reactivity and perivascular adipose tissue (PVAT) of mesenteric arteries in Wistar rats fed a high-fat diet. EXPERIMENTAL APPROACH:The effects of adiponectin on NO-dependent and independent vasorelaxation were investigated in isolated mesenteric arteries from 12-month-old male Wistar rats (W12m) fed a high-fat diet (HFD) for 4 months and compared with those from age-matched rats given a control diet. Adiponectin ((96 μg·day ) was administered by continuous infusion with a minipump, implanted subcutaneously, for 28 days. KEY RESULTS:Chronic adiponectin treatment reduced body weight, total cholesterol, free fatty acids, fasting glucose and area under the curve of intraperitoneal glucose tolerance test, compared with HFD rats. It also normalized NO-dependent vasorelaxation increasing endothelial NO synthase (eNOS) phosphorylation in mesenteric arteries of HFD rats. In PVAT from aged (W12m) and HFD rats there was increased expression of chemokines and pro-inflammatory adipokines, the latter being important contributors to endothelial dysfunction. Infusion of adiponectin reduced these changes. CONCLUSIONS AND IMPLICATIONS:Adiponectin normalized endothelial cell function by a mechanism that involved increased eNOS phoshorylation and decreased PVAT inflammation. Detailed characterization of the adiponectin signalling pathway in the vasculature and perivascular fat is likely to provide novel approaches to the management of atherosclerosis and metabolic disease. LINKED ARTICLES:This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc. 10.1111/bph.13756
Site-specific impairment of perivascular adipose tissue on advanced atherosclerotic plaques using multimodal nonlinear optical imaging. Kim Suho,Lee Eun-Soo,Lee Sang-Won,Kim Yong-Hoon,Lee Chul-Ho,Jo Dong-Gyu,Kim Se-Hwa Proceedings of the National Academy of Sciences of the United States of America Perivascular adipose tissue (PVAT), as a mechanical support, has been reported to systemically regulate vascular physiology by secreting adipokines and cytokines. How PVAT spatially and locally changes as atherosclerosis progresses is not known, however. We aimed to reveal the molecular changes in PVAT in advanced atherosclerosis based on multimodal nonlinear optical (MNLO) imaging. First, using an atherogenic apolipoprotein E knockout mouse model, we precisely assessed the browning level of thoracic PVAT via a correlative analysis between the size and number of lipid droplets (LDs) of label-free MNLO images. We also biochemically demonstrated the increased level of brown fat markers in the PVAT of atherosclerosis. In the initial stage of atherosclerosis, the PVAT showed a highly activated brown fat feature due to the increased energy expenditure; however, in the advanced stage, only the PVAT in the regions of the atherosclerotic plaques, not that in the nonplaque regions, showed site-specific changes. We found that p-smad2/3 and TGF-β signaling enhanced the increase in collagen to penetrate the PVAT and the agglomeration of LDs only at the sites of atherosclerotic plaques. Moreover, atherosclerotic thoracic PVAT (tPVAT) was an increased inflammatory response. Taken together, our findings show that PVAT changes differentially from the initial stages to advanced stages of atherosclerosis and undergoes spatial impairment focused on atherosclerotic plaques. Our study may provide insight into the local control of PVAT as a therapeutic target. 10.1073/pnas.1902007116
Autonomic nerves and perivascular fat: interactive mechanisms. Bulloch Janette M,Daly Craig J Pharmacology & therapeutics The evidence describing the autonomic innervation of body fat is reviewed with a particular focus on the role of the sympathetic neurotransmitters. In compiling the evidence, a strong case emerges for the interaction between autonomic nerves and perivascular adipose tissue (PVAT). Adipocytes have been shown to express receptors for neurotransmitters released from nearby sympathetic varicosities such as adrenoceptors (ARs), purinoceptors and receptors for neuropeptide Y (NPY). Noradrenaline can modulate both lipolysis (via α2- and β3-ARs) and lipogenesis (via α1- and β3-ARs). ATP can inhibit lipolysis (via P1 purinoceptors) or stimulate lipolysis (via P2y purinoceptors). NPY, which can be produced by adipocytes and sympathetic nerves, inhibits lipolysis. Thus the sympathetic triad of transmitters can influence adipocyte free fatty acid (FFA) content. Substance P (SP) released from sensory nerves has also been shown to promote lipolysis. Therefore, we propose a mechanism whereby sympathetic neurotransmission can simultaneously activate smooth muscle cells in the tunica media to cause vasoconstriction and alter FFA content and release from adjacent adipocytes in PVAT. The released FFA can influence endothelial function. Adipocytes also release a range of vasoactive substances, both relaxing and contractile factors, including adiponectin and reactive oxygen species. The action of adipokines (such as adiponectin) and reactive oxygen species (ROS) on cells of the vascular adventitia and nerves has yet to be fully elucidated. We hypothesise a strong link between PVAT and autonomic fibres and suggest that this poorly understood relationship is extremely important for normal vascular function and warrants a detailed study. 10.1016/j.pharmthera.2014.02.005
Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet (London, England) BACKGROUND:Coronary artery inflammation inhibits adipogenesis in adjacent perivascular fat. A novel imaging biomarker-the perivascular fat attenuation index (FAI)-captures coronary inflammation by mapping spatial changes of perivascular fat attenuation on coronary computed tomography angiography (CTA). However, the ability of the perivascular FAI to predict clinical outcomes is unknown. METHODS:In the Cardiovascular RISk Prediction using Computed Tomography (CRISP-CT) study, we did a post-hoc analysis of outcome data gathered prospectively from two independent cohorts of consecutive patients undergoing coronary CTA in Erlangen, Germany (derivation cohort) and Cleveland, OH, USA (validation cohort). Perivascular fat attenuation mapping was done around the three major coronary arteries-the proximal right coronary artery, the left anterior descending artery, and the left circumflex artery. We assessed the prognostic value of perivascular fat attenuation mapping for all-cause and cardiac mortality in Cox regression models, adjusted for age, sex, cardiovascular risk factors, tube voltage, modified Duke coronary artery disease index, and number of coronary CTA-derived high-risk plaque features. FINDINGS:Between 2005 and 2009, 1872 participants in the derivation cohort underwent coronary CTA (median age 62 years [range 17-89]). Between 2008 and 2016, 2040 patients in the validation cohort had coronary CTA (median age 53 years [range 19-87]). Median follow-up was 72 months (range 51-109) in the derivation cohort and 54 months (range 4-105) in the validation cohort. In both cohorts, high perivascular FAI values around the proximal right coronary artery and left anterior descending artery (but not around the left circumflex artery) were predictive of all-cause and cardiac mortality and correlated strongly with each other. Therefore, the perivascular FAI measured around the right coronary artery was used as a representative biomarker of global coronary inflammation (for prediction of cardiac mortality, hazard ratio [HR] 2·15, 95% CI 1·33-3·48; p=0·0017 in the derivation cohort, and 2·06, 1·50-2·83; p<0·0001 in the validation cohort). The optimum cutoff for the perivascular FAI, above which there is a steep increase in cardiac mortality, was ascertained as -70·1 Hounsfield units (HU) or higher in the derivation cohort (HR 9·04, 95% CI 3·35-24·40; p<0·0001 for cardiac mortality; 2·55, 1·65-3·92; p<0·0001 for all-cause mortality). This cutoff was confirmed in the validation cohort (HR 5·62, 95% CI 2·90-10·88; p<0·0001 for cardiac mortality; 3·69, 2·26-6·02; p<0·0001 for all-cause mortality). Perivascular FAI improved risk discrimination in both cohorts, leading to significant reclassification for all-cause and cardiac mortality. INTERPRETATION:The perivascular FAI enhances cardiac risk prediction and restratification over and above current state-of-the-art assessment in coronary CTA by providing a quantitative measure of coronary inflammation. High perivascular FAI values (cutoff ≥-70·1 HU) are an indicator of increased cardiac mortality and, therefore, could guide early targeted primary prevention and intensive secondary prevention in patients. FUNDING:British Heart Foundation, and the National Institute of Health Research Oxford Biomedical Research Centre. 10.1016/S0140-6736(18)31114-0