logo logo
Long Noncoding RNA LINC00152 Facilitates the Leukemogenesis of Acute Myeloid Leukemia by Promoting CDK9 Through miR-193a. Zhang Xingxia,Tao Weiguo DNA and cell biology The vital role of long noncoding RNAs (lncRNAs) on the acute myeloid leukemia (AML) has been increasingly recognized. This study aims to explore the unknown function of lncRNA LINC00152 in the leukemogenesis of AML. LINC00152 is determined to be upregulated in the AML samples, and the overexpression of LINC00152 is also authenticated in the advanced French-American-British (FAB) AML patients and closely correlated with the poor outcome of AML patients. The functional experiments state that knockdown of LINC00152 suppresses the proliferation, accelerates the apoptosis, and induces the cycle arrest of AML cells. The mechanical experiments state that LINC00152 and CDK9 were both targeted by miR-193a with the complementary binding sites at 3'-UTR. Moreover, in the rescue experiments, the enhanced LINC00152 expression could regain the suppression of tumor behavior induced by LINC00152 knockdown. In conclusion, this research reveals the important role of lncRNA LINC00152 in the AML leukemogenesis through targeting miR-193a/CDK9 axis. This finding could indicate the important pathogenesis of ncRNA and the vital roles of epigenetic regulation. 10.1089/dna.2018.4482
H22954, a novel long non-coding RNA down-regulated in AML, inhibits cancer growth in a BCL-2-dependent mechanism. Qi Xiaofei,Jiao Yang,Cheng Chao,Qian Feng,Chen Zixing,Wu Qingyu Cancer letters Long non-coding RNAs (lncRNAs) are important in cancer biology. In this study, we analyzed differentially expressed genes in CD34  hematopoietic cells and identified a novel lncRNA, H22954, which was down-regulated in acute myeloid leukemia (AML) patients. In cultured AML cells and mouse xenograft models, H22954 expression inhibited cell proliferation and tumor growth, respectively. Bioinformatic analysis and RNA antisense purification assay indicated that H22954 targeted the 3' untranslated region of the BCL2 gene. In luciferase assays, H22954 expression inhibited BCL2 expression. In transfected K562 cells and mouse xenograft tumors, H22954 overexpression reduced BCL-2 protein levels and promoted cell death. In AML patients, H22954 expression inversely correlated with BCL-2 protein levels in bone marrow cells, blast cell numbers and disease prognosis. These results indicate that H22954 is a novel regulator of BCL-2 and that reduced H22954 expression may play an important role in the pathogenesis of AML. 10.1016/j.canlet.2019.03.055
MNDR v3.0: mammal ncRNA-disease repository with increased coverage and annotation. Nucleic acids research Many studies have indicated that non-coding RNA (ncRNA) dysfunction is closely related to numerous diseases. Recently, accumulated ncRNA-disease associations have made related databases insufficient to meet the demands of biomedical research. The constant updating of ncRNA-disease resources has become essential. Here, we have updated the mammal ncRNA-disease repository (MNDR, http://www.rna-society.org/mndr/) to version 3.0, containing more than one million entries, four-fold increment in data compared to the previous version. Experimental and predicted circRNA-disease associations have been integrated, increasing the number of categories of ncRNAs to five, and the number of mammalian species to 11. Moreover, ncRNA-disease related drug annotations and associations, as well as ncRNA subcellular localizations and interactions, were added. In addition, three ncRNA-disease (miRNA/lncRNA/circRNA) prediction tools were provided, and the website was also optimized, making it more practical and user-friendly. In summary, MNDR v3.0 will be a valuable resource for the investigation of disease mechanisms and clinical treatment strategies. 10.1093/nar/gkaa707