加载中

    The pro-remyelination properties of microglia in the central nervous system. Lloyd Amy F,Miron Veronique E Nature reviews. Neurology Microglia are resident macrophages of the CNS that are involved in its development, homeostasis and response to infection and damage. Microglial activation is a common feature of neurological disorders, and although in some instances this activation can be damaging, protective and regenerative functions of microglia have been revealed. The most prominent example of the regenerative functions is a role for microglia in supporting regeneration of myelin after injury, a process that is critical for axonal health and relevant to numerous disorders in which loss of myelin integrity is a prevalent feature, such as multiple sclerosis, Alzheimer disease and motor neuron disease. Although drugs that are intended to promote remyelination are entering clinical trials, the mechanisms by which remyelination is controlled and how microglia are involved are not completely understood. In this Review, we discuss work that has identified novel regulators of microglial activation - including molecular drivers, population heterogeneity and turnover - that might influence their pro-remyelination capacity. We also discuss therapeutic targeting of microglia as a potential approach to promoting remyelination. 10.1038/s41582-019-0184-2
    An updated histological classification system for multiple sclerosis lesions. Kuhlmann Tanja,Ludwin Samuel,Prat Alexandre,Antel Jack,Brück Wolfgang,Lassmann Hans Acta neuropathologica Multiple sclerosis is a complex and heterogeneous, most likely autoimmune, demyelinating disease of the central nervous system (CNS). Although a number of histological classification systems for CNS lesions have been used by different groups in recent years, no uniform classification exists. In this paper, we propose a simple and unifying classification of MS lesions incorporating many elements of earlier histological systems that aims to provide guidelines for neuropathologists and researchers studying MS lesions to allow for better comparison of different studies performed with MS tissue, and to aid in understanding the pathogenesis of the disease. Based on the presence/absence and distribution of macrophages/microglia (inflammatory activity) and the presence/absence of ongoing demyelination (demyelinating activity), we suggest differentiating between active, mixed active/inactive, and inactive lesions with or without ongoing demyelination. Active lesions are characterized by macrophages/microglia throughout the lesion area, whereas mixed active/inactive lesions have a hypocellular lesion center with macrophages/microglia limited to the lesion border. Inactive lesions are almost completely lacking macrophages/microglia. Active and mixed active/inactive lesions can be further subdivided into lesions with ongoing myelin destruction (demyelinating lesions) and lesions in which the destruction of myelin has ceased, but macrophages are still present (post-demyelinating lesions). This distinction is based on the presence or absence of myelin degradation products within the cytoplasm of macrophages/microglia. For this classification of MS lesions, identification of myelin with histological stains [such as luxol fast blue-PAS] or by immunohistochemistry using antibodies against myelin basic-protein (MBP) or proteolipid-protein (PLP), as well as, detection of macrophages/microglia by, e.g., anti-CD68 is sufficient. Active and demyelinating lesions may be further subdivided into the early and late demyelinating lesions. The former is defined by the presence in macrophages of major and small molecular weight myelin proteins, such as cyclic nucleotide diphosphoesterase (CNP), myelin oligodendrocyte glycoprotein (MOG), or myelin-associated protein (MAG), whereas macrophages in the latter demonstrate merely the presence of the major myelin proteins MBP or PLP. We discuss the histological features and staining techniques required to classify MS lesions, and, in addition, describe the histological hallmarks of cortical pathology and diffuse white matter changes, as well as of remyelination. 10.1007/s00401-016-1653-y