加载中

    Antiaging properties of a grape-derived antioxidant are regulated by mitochondrial balance of fusion and fission leading to mitophagy triggered by a signaling network of Sirt1-Sirt3-Foxo3-PINK1-PARKIN. Das Somak,Mitrovsky Goran,Vasanthi Hannah R,Das Dipak K Oxidative medicine and cellular longevity It was proposed that resveratrol, a polyphenolic antioxidant and a calorie restriction mimetic could promote longevity but subsequent studies could not prove this. The original proposal was based on the fact that a grape-derived antioxidant could activate the antiaging gene Sirt1. Most studies agree that indeed grape activates Sirt1, but a question remains whether Sirt1 is the cause or consequence of resveratrol treatment. Subsequently, mitochondrial Sirt3 was found to be activated. The present study on ischemic reperfusion (I/R) in rat hearts demonstrates that Foxo3a is activated subsequent to Sirt3 activation, which then activates PINK1. PINK1 potentiates activation of PARKIN leading to the activation of mitochondrial fission and mitophagy. Confocal microscopy conclusively shows the coexistence of Sirt3 with Foxo3a and Foxo3a with PINK1 and PARKIN. Mitophagy was demonstrated both by confocal microscopy and transmission electron microscopy. Western blot analyses data are consistent with the results of confocal microscopy. It appears that the grape-derived antioxidant modifies the intracellular environment by changing the oxidizing milieu into a reducing milieu and upregulating intracellular glutathione, potentiates a signal transduction cascade consisting of Sirt1/Sirt3-Foxo3a-PINK1-PARKIN-mitochondrial fusion fission-mitophagy that leads to cardioprotection, and paves the way to an anti-aging environment. 10.1155/2014/345105
    Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition. Ma Sai,Chen Jiangwei,Feng Jing,Zhang Ran,Fan Miaomiao,Han Dong,Li Xiang,Li Congye,Ren Jun,Wang Yabin,Cao Feng Oxidative medicine and cellular longevity The NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome-mediated inflammatory responses are critically involved in the progression of atherosclerosis (AS), which is the essential cause for cardiovascular diseases. Melatonin has anti-inflammatory properties. However, little is known about the potential effects of melatonin in the pathological process of AS. Herein, we demonstrate that melatonin suppressed prolonged NLRP3 inflammasome activation in atherosclerotic lesions by reactive oxygen species (ROS) scavenging via mitophagy in macrophages. The atherosclerotic mouse model was induced with a high-fat diet using ApoE mice. Melatonin treatment markedly attenuated AS plaque size and vulnerability. Furthermore, melatonin decreased NLRP3 inflammasome activation and the consequent IL-1 secretion within atherosclerotic lesions. Despite the unchanged protein expression, the silent information regulator 3 (Sirt3) activity was elevated in the atherosclerotic lesions in melatonin-treated mice. In ox-LDL-treated macrophages, melatonin attenuated the NLRP3 inflammasome activation and the inflammatory factors secretion, while this protective effect was abolished by either Sirt3 silence or autophagy inhibitor 3-MA. Mitochondrial ROS (mitoROS), which was a recognized inducer for NLRP3 inflammasome, was attenuated by melatonin through the induction of mitophagy. Both Sirt3-siRNA and autophagy inhibitor 3-MA partially abolished the beneficial effects of melatonin on mitoROS clearance and NLRP3 inflammasome activation, indicating the crucial role of Sirt3-mediated mitophagy. Furthermore, we demonstrated that melatonin protected against AS via the Sirt3/FOXO3a/Parkin signaling pathway. In conclusion, the current study demonstrated that melatonin prevented atherosclerotic progression, at least in part, via inducing mitophagy and attenuating NLRP3 inflammasome activation, which was mediated by the Sirt3/FOXO3a/Parkin signaling pathway. Collectively, our study provides insight into melatonin as a new target for therapeutic intervention for AS. 10.1155/2018/9286458
    CR6 interacting factor 1 deficiency induces premature senescence via SIRT3 inhibition in endothelial cells. Kim Seonhee,Piao Shuyu,Lee Ikjun,Nagar Harsha,Choi Su-Jeong,Shin Nara,Kim Dong Woon,Shong Minho,Jeon Byeong Hwa,Kim Cuk-Seong Free radical biology & medicine Vascular endothelial cell senescence is an important cause of cardiac-related diseases. Mitochondrial reactive oxygen species (mtROS) have been implicated in cellular senescence and multiple cardiovascular disorders. CR6 interacting factor 1 (CRIF1) deficiency has been shown to increase mtROS via the inhibition of mitochondrial oxidative phosphorylation; however, the mechanisms by which mtROS regulates vascular endothelial senescence have not been thoroughly explored. The goal of this study was to investigate the effects of CRIF1 deficiency on endothelial senescence and to elucidate the underlying mechanisms. CRIF1 deficiency was shown to increase the activity of senescence-associated β-galactosidase along with increased expression of phosphorylated p53, p21, and p16 proteins. Cell cycle arrested in the G0/G1 phase were identified in CRIF1-deficient cells using the flow cytometry. Furthermore, CRIF1 deficiency was also shown to increase cellular senescence by reducing the expression of Sirtuin 3 (SIRT3) via ubiquitin-mediated degradation of transcription factors PGC1α and NRF2. Downregulation of CRIF1 also attenuated the function of mitochondrial antioxidant enzymes including manganese superoxide dismutase (MnSOD), Foxo3a, nicotinamide-adenine dinucleotide phosphate, and glutathione via the suppression of SIRT3. Interestingly, overexpression of SIRT3 in CRIF1-deficient endothelial cells not only reduced mtROS levels by elevating expression of the antioxidant enzyme MnSOD but also decreased the expression of cell senescence markers. Taken together, these results suggest that CRIF1 deficiency induces vascular endothelial cell senescence via ubiquitin-mediated degradation of the transcription coactivators PGC1α and NRF2, resulting in decreased expression of SIRT3. 10.1016/j.freeradbiomed.2020.02.017
    SIRT3 functions in the nucleus in the control of stress-related gene expression. Iwahara Toshinori,Bonasio Roberto,Narendra Varun,Reinberg Danny Molecular and cellular biology SIRT3 is a member of the Sir2 family of NAD(+)-dependent protein deacetylases that promotes longevity in many organisms. The processed short form of SIRT3 is a well-established mitochondrial protein whose deacetylase activity regulates various metabolic processes. However, the presence of full-length (FL) SIRT3 in the nucleus and its functional importance remain controversial. Our previous studies demonstrated that nuclear FL SIRT3 functions as a histone deacetylase and is transcriptionally repressive when artificially recruited to a reporter gene. Here, we report that nuclear FL SIRT3 is subjected to rapid degradation under conditions of cellular stress, including oxidative stress and UV irradiation, whereas the mitochondrial processed form is unaffected. FL SIRT3 degradation is mediated by the ubiquitin-proteasome pathway, at least partially through the ubiquitin protein ligase (E3) activity of SKP2. Finally, we show by chromatin immunoprecipitation that some target genes of nuclear SIRT3 are derepressed upon degradation of SIRT3 caused by stress stimuli. Thus, SIRT3 exhibits a previously unappreciated role in the nucleus, modulating the expression of some stress-related and nuclear-encoded mitochondrial genes. 10.1128/MCB.00822-12
    Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Wei Zhen,Song Jinglue,Wang Guanghui,Cui Ximao,Zheng Jun,Tang Yunlan,Chen Xinyuan,Li Jixi,Cui Long,Liu Chen-Ying,Yu Wei Nature communications The conversion of serine and glycine that is accomplished by serine hydroxymethyltransferase 2 (SHMT2) in mitochondria is significantly upregulated in various cancers to support cancer cell proliferation. In this study, we observed that SHMT2 is acetylated at K95 in colorectal cancer (CRC) cells. SIRT3, the major deacetylase in mitochondria, is responsible for SHMT2 deacetylation. SHMT2-K95-Ac disrupts its functional tetramer structure and inhibits its enzymatic activity. SHMT2-K95-Ac also promotes its degradation via the K63-ubiquitin-lysosome pathway in a glucose-dependent manner. TRIM21 acts as an E3 ubiquitin ligase for SHMT2. SHMT2-K95-Ac decreases CRC cell proliferation and tumor growth in vivo through attenuation of serine consumption and reduction in NADPH levels. Finally, SHMT2-K95-Ac is significantly decreased in human CRC samples and is inversely associated with increased SIRT3 expression, which is correlated with poorer postoperative overall survival. Our study reveals the unknown mechanism of SHMT2 regulation by acetylation which is involved in colorectal carcinogenesis. 10.1038/s41467-018-06812-y
    Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent mitophagy. Wang Shanjie,Zhao Zhijing,Fan Yanhong,Zhang Mingming,Feng Xinyu,Lin Jie,Hu Jianqiang,Cheng Zheng,Sun Chuang,Liu Tingting,Xiong Zhenyu,Yang Zhi,Wang Haichang,Sun Dongdong Biochimica et biophysica acta. Molecular basis of disease Mitochondrial dysfunction contributes to heart failure induced mortality in approximately 80% of diabetic patients. Mitophagy degrades defective mitochondria and maintains a healthy mitochondrial population, which is essential for cardiomyocyte survival in diabetic stress. Herein, we determined whether Mst1 regulated mitophagy and investigated the downstream signaling pathway in the development of diabetic cardiomyopathy (DCM). Mst1 deficiency promoted elimination of dysfunctional mitochondria in diabetic cardiomyopathy without affecting mitochondrial biogenesis. Enhanced mitophagy was observed in Mst1 interfering cardiomyocytes subjected to high glucose treatment using 3-Methyladenine and Chloroquine. Consistent with these results, in vivo and in vitro loss of function experiments indicated that Mst1 participated in the development of DCM by inhibiting Parkin-dependent mitophagy. Mst1 deficiency alleviated the detrimental phenotype of DCM. Interestingly, the protective effects of Mst1 knockout on DCM were compromised in diabetic Parkin mice. Mechanistically, Mst1 knockdown significantly enhanced Parkin expression and translocation to the mitochondria, as evidenced by immunofluorescence study and Western blot analysis. Furthermore, Sirt3 deletion abolished the detrimental effects of Mst1 on DCM. Collectively, Mst1 inhibits Sirt3 expression thus participates in the development of DCM by inhibiting cardiomyocyte mitophagy. The mechanism is associated with Parkin inhibition. 10.1016/j.bbadis.2018.04.009