加载中

    Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro. Hu Xiao-Fan,Wang Lin,Lu Yi-Zhao,Xiang Geng,Wu Zi-Xiang,Yan Ya-Bo,Zhang Yang,Zhao Xiong,Zang Yuan,Shi Lei,Lei Wei,Feng Ya-Fei Acta biomaterialia Diabetes-induced reactive oxygen species (ROS) overproduction would result in compromised osteointegration of titanium implant (TI) and high rate of implant failure, yet the underlying mechanisms remain elusive. Adiponectin (APN) is a fat-derived adipocytokine with strong antioxidant, mitochondrial-protective and anti-diabetic efficacies. We hypothesized that mitochondrial dysfunction under diabetes may account for the oxidative stress in osteoblasts and titanium-bone interface (TBI) instability, which could be ameliorated by APN. To test this hypothesis, we incubated primary rat osteoblasts on TI and tested the cellular behaviors when subjected to normal milieu (NM), diabetic milieu (DM), DM+APN, DM+AICAR (AMPK activator) and DM+APN+Compound C (AMPK inhibitor). In vivo, APN or APN+Compound C were administered to diabetic db/db mice with TI implanted in their femurs. Results showed that diabetes induced structural damage, dysfunction and content decrease of mitochondria in osteoblasts, which led to ROS overproduction, dysfunction and apoptosis of osteoblasts accompanied by the inhibition of AMPK signaling. APN alleviated the mitochondrial damage by activating AMPK, thus reversing osteoblast impairment and improving the osteointegration of TI evidenced by Micro-CT and histological analysis. Furthermore, AICAR showed beneficial effects similar to APN treatment, while the protective effects of APN were abolished when AMPK activation was blocked by Compound C. This study clarifies mitochondrial dysfunction as a crucial mechanism in the impaired bone healing and implant loosening in diabetes, and provides APN as a novel promising active component for biomaterial-engineering to improve clinical performance of TI in diabetic patients. STATEMENT OF SIGNIFICANCE:The loosening rate of titanium implants in diabetic patients is high. The underlying mechanisms remain elusive and, with the rapid increase of diabetic morbility, efficacious strategies to mitigate this problem have become increasingly important. Our study showed that the mitochondrial impairment and the consequent oxidative stress in osteoblasts at the titanium-bone interface (TBI) play a critical role in the diabetes-induced poor bone repair and implant destabilization, which could become therapeutic targets. Furthermore, adiponectin, a cytokine, promotes the bio-functional recovery of osteoblasts and bone regeneration at the TBI in diabetes. This provides APN as a novel bioactive component used in material-engineering to promote the osteointegration of implants, which could reduce implant failure, especially for diabetic patients. 10.1016/j.actbio.2017.06.020
    Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants. Wang Lin,Hu Xiaofan,Ma Xiangyu,Ma Zhensheng,Zhang Yang,Lu Yizhao,Li Xiang,Lei Wei,Feng Yafei Colloids and surfaces. B, Biointerfaces Clinical evidence indicates a high failure rate for titanium implants (TiI) in diabetic patients, involving the overproduction of reactive oxygen species (ROS) at the implant/bone interface. Tantalum coating on titanium (TaTi) has exerted better tissue integration properties than TiI, but its biological performance under diabetic conditions remains elusive. To investigate whether TaTi may ameliorate diabetes-induced implant destabilization and the underlying mechanisms, primary rabbit osteoblasts cultured on 3-dimensional printed TiI and TaTi were exposed to normal serum (NS), diabetic serum (DS), DS+NAC (a potent ROS inhibitor), and DS+SB203580 (a specific p38 MAPK inhibitor). An in vivo study was performed on diabetic sheep implanted with TiI or TaTi. Diabetes induced mitochondrial-derived ROS overproduction and caused cellular dysfunction and apoptosis, together with the activation of p38 MAPK in osteoblasts on TiI surface. Importantly, TaTi significantly attenuated ROS production and p38 MAPK phosphorylation and exerted more osseointegrative cell behavior than TiI, as shown by improved osteoblast adhesion, increased cell proliferation and differentiation and decreased apoptosis. These results were confirmed in vivo by the enhanced bone healing efficacy of TaTi. Moreover, treatment with NAC or SB203580 on TiI not only inhibited the activation of p38 MAPK but also improved cell function and alleviated apoptotic injury, whereas TaTi combined with NAC or SB203580 failed to further improve osteoblast functional recovery compared with TaTi alone. These results demonstrated that the tantalum coating markedly improved diabetes-induced impaired osteogenesis of TiI, which may be attributed to the suppression of the ROS-mediated p38 MAPK pathway. 10.1016/j.colsurfb.2016.09.018
    The impact of sitagliptin on macrophage polarity and angiogenesis in the osteointegration of titanium implants in type 2 diabetes. Xiang Geng,Huang Xinyi,Wang Tianji,Wang Jing,Zhao Guoxuan,Wang Han,Feng Yafei,Lei Wei,Hu Xiaofan Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie BACKGROUND:Clinical evidence indicates that sitagliptin treatment improves bone quality in diabetic patients, but the mechanisms involved remain elusive. Here, we studied the role of angiogenesis with sitagliptin treatment in diabetes-induced poor osteointegration of titanium implants and the underlying mechanisms. METHODS:In vitro, Human Umbilical Vein Endothelial Cells (HUVECs) incubated on titanium (Ti) surface were subjected to 1) normal milieu (NM); 2) diabetic milieu (DM); 3) DM + sitagliptin; 4) NM + macrophage; 5) DM + macrophage; or 6) DM + macrophage + sitagliptin. Microphage and HUVECs were cultured alone or co-cultured in a Transwell system. In vivo, DM was induced by high-fat diet and administration of streptozotocin (STZ) in rats. Titanium screws were implanted in the femurs of rats in three groups: Control, DM, Sitagliptin-treated DM. RESULTS:In vitro, when cells were incubated alone, DM caused M1 polarization of macrophage, evidenced by the increased iNOS and decreased CD206 expressions, and obvious dysfunctions of HUVECs. The DM-induced injury of endothelial cells were significantly worsened when the two cells were co-cultured. The addition of sitagliptin markedly reversed the changes of macrophage but not of HUVECs in DM when cells were cultured alone. When cells co-cultured, however, both the abnormal macrophage polarization and the endothelial impairment in DM was significantly alleviated by sitagliptin. In vivo, compared with normal animals, DM animals showed imbalanced M1/M2 polarization, angiogenesis inhibition and poor bone formation on the bone-implant interface (BII), which were significantly ameliorated by sitagliptin treatment. CONCLUSION:Our results demonstrate macrophage polarization imbalance as a crucial mechanism underlying the impaired angiogenesis and bone healing in diabetes, and provide sitagliptin as a promising novel drug for biomaterial-engineering to improve the osteointegration of titanium implants in diabetic patients. 10.1016/j.biopha.2020.110078
    Ophiopogonin D improves osteointegration of titanium alloy implants under diabetic conditions by inhibition of ROS overproduction via Wnt/β-catenin signaling pathway. Ma Xiang-Yu,Wen Xin-Xin,Yang Xiao-Jiang,Zhou Da-Peng,Wu Qiong,Feng Ya-Fei,Ding Hai-Jiao,Lei Wei,Yu Hai-Long,Liu Bing,Xiang Liang-Bi,Wang Tian-Sheng Biochimie A high failure rate of titanium implants in diabetic patients has been indicated in clinical evidences. Excessive oxidative stress at the bone-implant interface plays an important role in the impaired osteointegration under diabetic conditions. While the underlying mechanisms remain unknown and the targeted treatments are urgently needed. Ophiopogonin D (OP-D), isolated from Chinese herbal Radix Ophiopogon japonicus, is generally reported to be a potent antioxidant agent. In the present study, we hypothesized that OP-D exerted promotive effects on osteointegration against oxidative stress, and investigated the underlying mechanisms associated with alteration of Wnt/β-catenin signaling pathway. Rabbit osteoblasts incubated on titanium alloy implant were co-cultured with normal serum (NS), diabetic serum (DS), DS + OP-D, DS + NAC (a potent ROS inhibitor) and DS + OP-D + Dkk1 (a Wnt inhibitor) for examinations of osteoblast behaviors. For in vivo study, titanium alloy implants were implanted into the femoral condyle defects on diabetic rabbits. Results demonstrated that diabetes-induced oxidative stress resulted in osteoblast dysfunctions and apoptotic injury at the bone-implant interface, concomitant with the inactivation of Wnt/β-catenin signaling. Importantly, OP-D administration attenuated oxidative stress, directly reactivating Wnt/β-catenin signaling. Osteoblast dysfunctions were thus reversed as evidenced by improved osteoblast adhesion, proliferation and differentiation, and ameliorated apoptotic injury, exerting similar effects to NAC treatment. In addition, the positive effects afforded by OP-D were confirmed by improved osteointegration and oetogenesis within the titanium alloy implants in vivo by Micro-CT and histological analyses. Furthermore, the pro-osteogenic effects of OP-D were almost completely abolished by the Wnt inhibitor Dkk1. These results demonstrated, for the first time, OP-D administration alleviated the damaged osteointegration of titanium alloy implants under diabetic conditions by means of inhibiting oxidative stress via a Wnt/β-catenin-dependent mechanism. The OP-D administration would become a reliable treatment strategy for implant failure therapy in diabetics due to the optimal anti-oxidative and pro-osteogenic properties. 10.1016/j.biochi.2018.04.022