logo
Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. Hammond Rebecca S,Bond Chris T,Strassmaier Timothy,Ngo-Anh Thu Jennifer,Adelman John P,Maylie James,Stackman Robert W The Journal of neuroscience : the official journal of the Society for Neuroscience Apamin-sensitive, small-conductance, Ca2+-activated K+ channels (SK channels) modulate neuronal excitability in CA1 neurons. Blocking all SK channel subtypes with apamin facilitates the induction of hippocampal synaptic plasticity and enhances hippocampal learning. In CA1 dendrites, SK channels are activated by Ca2+ through NMDA receptors and restrict glutamate-mediated EPSPs. Studies of SK channel knock-out mice reveal that of the three apamin-sensitive SK channel subunits (SK1-SK3), only SK2 subunits are necessary for the apamin-sensitive currents in CA1 hippocampal neurons. To determine the specific influence of SK2 channels on hippocampal synaptic plasticity, learning, and memory, we used gene targeting through homologous recombination in embryonic stem cells to generate transgenic mice that overexpress SK2 subunits by 10-fold (SK2+/T). In these mice, the apamin-sensitive current in CA1 neurons was increased by approximately fourfold, relative to wild-type (WT) littermates. In addition, the amplitude of synaptically evoked EPSPs recorded from SK2+/T CA1 neurons increased twice as much in response to SK channel blockade relative to EPSPs recorded from WT CA1 neurons. Consistent with this, SK2 overexpression reduced long-term potentiation after high-frequency stimulation compared with WT littermates and severely impaired learning in both hippocampus- and amygdala-dependent tasks. We conclude that SK2 channels regulate hippocampal synaptic plasticity and play a critical role in modulating mechanisms of learning and memory. 10.1523/JNEUROSCI.4106-05.2006
The small-conductance calcium-activated potassium channel is a key modulator of firing and long-term depression in the dorsal striatum. Hopf F Woodward,Seif Taban,Mohamedi Maysha L,Chen Billy T,Bonci Antonello The European journal of neuroscience The striatum is considered to be critical for the control of goal-directed action, with the lateral dorsal striatum (latDS) being implicated in modulation of habits and the nucleus accumbens thought to represent a limbic-motor interface. Although medium spiny neurons from different striatal subregions exhibit many similar properties, differential firing and synaptic plasticity could contribute to the varied behavioral roles across subregions. Here, we examined the contribution of small-conductance calcium-activated potassium channels (SKs) to action potential generation and synaptic plasticity in adult rat latDS and nucleus accumbens shell (NAS) projection neurons in vitro. The SK-selective antagonist apamin exerted a prominent effect on latDS firing, significantly decreasing the interspike interval. Furthermore, prolonged latDS depolarization increased the interspike interval and reduced firing, and this enhancement was reversed by apamin. In contrast, NAS neurons exhibited greater basal firing rates and less regulation of firing by SK inhibition and prolonged depolarization. LatDS neurons also had greater SK currents than NAS neurons under voltage-clamp. Importantly, SK inhibition with apamin facilitated long-term depression (LTD) induction in the latDS but not the NAS, without alterations in glutamate release. In addition, SK activation in the latDS prevented LTD induction. Greater SK function in the latDS than in the NAS was not secondary to differences in sodium or inwardly rectifying potassium channel function, and apamin enhancement of firing did not reflect indirect action through cholinergic interneurons. Thus, these data demonstrate that SKs are potent modulators of action potential generation and LTD in the dorsal striatum, and could represent a fundamental cellular mechanism through which habits are regulated. 10.1111/j.1460-9568.2010.07231.x
Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. Gu Ning,Vervaeke Koen,Hu Hua,Storm Johan F The Journal of physiology In hippocampal pyramidal cells, a single action potential (AP) or a burst of APs is followed by a medium afterhyperpolarization (mAHP, lasting approximately 0.1 s). The currents underlying the mAHP are considered to regulate excitability and cause early spike frequency adaptation, thus dampening the response to sustained excitatory input relative to responses to abrupt excitation. The mAHP was originally suggested to be primarily caused by M-channels (at depolarized potentials) and h-channels (at more negative potentials), but not SK channels. In recent reports, however, the mAHP was suggested to be generated mainly by SK channels or only by h-channels. We have now re-examined the mechanisms underlying the mAHP and early spike frequency adaptation in CA1 pyramidal cells by using sharp electrode and whole-cell recording in rat hippocampal slices. The specific M-channel blocker XE991 (10 microm) suppressed the mAHP following 1-5 APs evoked by current injection at -60 mV. XE991 also enhanced the excitability of the cell, i.e. increased the number of APs evoked by a constant depolarizing current pulse, reduced their rate of adaptation, enhanced the after depolarization and promoted bursting. Conversely, the M-channel opener retigabine reduced excitability. The h-channel blocker ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; 10 microm) fully suppressed the mAHP at -80 mV, but had little effect at -60 mV, whereas XE991 did not measurably affect the mAHP at -80 mV. Likewise, ZD7288 had little or no effect on excitability or adaptation during current pulses injected from -60 mV, but changed the initial discharge during depolarizing pulses injected from -80 mV. In contrast to previous reports, we found that blockade of Ca2+-activated K+ channels of the SK/KCa type by apamin (100-400 nm) failed to affect the mAHP or adaptation. A computational model of a CA1 pyramidal cell predicted that M- and h-channels will generate mAHPs in a voltage-dependent manner, as indicated by the experiments. We conclude that M- and h-channels generate the somatic mAHP in hippocampal pyramidal cells, with little or no net contribution from SK channels. 10.1113/jphysiol.2005.086835
Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons. Vatanparast Jafar,Janahmadi Mahyar Brain research Apamin-sensitive small conductance Ca(2+)-dependent K(+)(SK) channels are generally accepted as responsible for the medium afterhyperpolarization (mAHP) after single or train of action potentials. Here, we examined the functional involvement of these channels in the firing precision, post train AHP and spike frequency adaptation (SFA) in neurons of snail Caucasotachea atrolabiata. Apamin, a selective SK channel antagonist, reduced the duration of single-spike AHP and disrupted the spontaneous rhythmic activity. High frequency trains of evoked action potentials showed a time-dependent decrease in the action potential discharge rate (spike frequency adaptation) and followed by a prominent post stimulus inhibitory period (PSIP) as a marker of slow AHP (sAHP). Neither sAHP nor SFA was attenuated by apamin, suggesting that apamin-sensitive SK channels can strongly affect the rhythmicity, but are probably not involved in the SFA and sAHP. Nifedipine, antagonist of L-type Ca(2+) channels, decreased the firing frequency and neuronal rhythmicity. When PSIP was normalized to the background interspike interval, a suppressing effect of nifedipine on PSIP was also observed. Intracellular iontophoretic injection of BAPTA, a potent Ca(2+) chelator, dramatically suppressed PSIP that confirms the intracellular Ca(2+) dependence of the sAHP, but had no discernable effect on the SFA. During train-evoked activity a reduction in the action potential overshoot and maximum depolarization rate was also observed, along with a decrease in the firing frequency, while the action potential threshold increased, which indicated that Na(+) channels, rather than Ca(2+)-dependent K(+) channels, are involved in the SFA. 10.1016/j.brainres.2008.12.003
A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. Komendantov Alexander O,Komendantova Olena G,Johnson Steven W,Canavier Carmen C Journal of neurophysiology Midbrain dopaminergic (DA) neurons in vivo exhibit two major firing patterns: single-spike firing and burst firing. The firing pattern expressed is dependent on both the intrinsic properties of the neurons and their excitatory and inhibitory synaptic inputs. Experimental data suggest that the activation of N-methyl-D-aspartate (NMDA) and GABAA receptors is a crucial contributor to the initiation and suppression of burst firing, respectively, and that blocking Ca(2+)-activated potassium SK channels can facilitate burst firing. A multi-compartmental model of a DA neuron with a branching structure was developed and calibrated based on in vitro experimental data to explore the effects of different levels of activation of NMDA and GABAA receptors as well as the modulation of the SK current on the firing activity. The simulated tonic activation of GABAA receptors was calibrated by taking into account the difference in the electrotonic properties in vivo versus in vitro. Although NMDA-evoked currents are required for burst generation in the model, currents evoked by GABAA-receptor activation can also regulate the firing pattern. For example, the model predicts that increasing the level of NMDA receptor activation can produce excessive depolarization that prevents burst firing, but a concurrent increase in the activation of GABAA receptors can restore burst firing. Another prediction of the model is that blocking the SK channel current in vivo will facilitate bursting, but not as robustly as blocking the GABAA receptors. 10.1152/jn.00062.2003
Molecular and cellular basis of small--and intermediate-conductance, calcium-activated potassium channel function in the brain. Pedarzani P,Stocker M Cellular and molecular life sciences : CMLS Small conductance calcium-activated potassium (SK or K(Ca)2) channels link intracellular calcium transients to membrane potential changes. SK channel subtypes present different pharmacology and distribution in the nervous system. The selective blocker apamin, SK enhancers and mice lacking specific SK channel subunits have revealed multifaceted functions of these channels in neurons, glia and cerebral blood vessels. SK channels regulate neuronal firing by contributing to the afterhyperpolarization following action potentials and mediating I(AHP), and partake in a calcium-mediated feedback loop with NMDA receptors, controlling the threshold for induction of hippocampal long-term potentiation. The function of distinct SK channel subtypes in different neurons often results from their specific coupling to different calcium sources. The prominent role of SK channels in the modulation of excitability and synaptic function of limbic, dopaminergic and cerebellar neurons hints at their possible involvement in neuronal dysfunction, either as part of the causal mechanism or as potential therapeutic targets. 10.1007/s00018-008-8216-x
Functional interplay between NMDA receptors, SK channels and voltage-gated Ca2+ channels regulates synaptic excitability in the medial prefrontal cortex. Faber E S L The Journal of physiology Synaptic activity in the medial prefrontal cortex (mPFC) is fundamental for higher cognitive functions such as working memory. The present study shows that small conductance (SK) calcium-activated potassium channels attenuate excitatory synaptic transmission at layer 2/3 and layer 5 inputs to layer 5 pyramidal neurons in the mPFC. SK channels are located postsynaptically at synapses where they are activated during synaptic transmission by calcium influx through NMDA receptors, L-type calcium channels, R-type calcium channels and by calcium release from IP(3)-sensitive stores. Removal of the SK channel-mediated shunt of synaptic transmission reveals significant NMDA receptor-mediated activation during basal synaptic transmission, which is greater at layer 5 inputs (approximately 30%) than at layer 2/3 inputs (approximately 20%). These findings show that interactions between NMDA receptors, SK channels and voltage-gated calcium channels play a critical role in regulating excitatory synaptic transmission in layer 5 pyramidal neurons in the mPFC. 10.1113/jphysiol.2009.185645
Crystal structure of the leucine zipper domain of small-conductance Ca2+-activated K+ (SK(Ca)) channel from Rattus norvegicus. Kim Ji-Yoen,Kim Mun-Kyoung,Kang Gil Bu,Park Chul-Seung,Eom Soo Hyun Proteins 10.1002/prot.21634
Dendritic SK channels convert NMDA-R-dependent LTD to burst timing-dependent plasticity. Harvey-Girard Erik,Maler Leonard Journal of neurophysiology Feedback and descending projections from higher to lower brain centers play a prominent role in all vertebrate sensory systems. Feedback might be optimized for the specific sensory processing tasks in their target brain centers, but it has been difficult to connect the properties of feedback synapses to sensory tasks. Here, we use the electrosensory system of a gymnotiform fish (Apteronotus leptorhynchus) to address this problem. Cerebellar feedback to pyramidal cells in the first central electrosensory processing region, the electrosensory lateral line lobe (ELL), is critical for canceling spatially and temporally redundant electrosensory input. The ELL contains four electrosensory maps, and we have previously analyzed the synaptic and network bases of the redundancy reduction mechanism in a map (centrolateral segment; CLS) believed to guide electrolocation behavior. In the CLS, only long-term depression was induced by pairing feedback presynaptic and pyramidal cell postsynaptic bursts. In this paper, we turn to an ELL map (lateral segment; LS) known to encode electrocommunication signals. We find remarkable differences in synaptic plasticity of the morphologically identical cerebellar feedback input to the LS. In the LS, pyramidal cell SK channels permit long-term potentiation (LTP) of feedback synapses when pre- and postsynaptic bursts occur at the same time. We hypothesize that LTP in this map is required for enhancing the encoding of weak electrocommunication signals. We conclude that feedback inputs that appear morphologically identical in sensory maps dedicated to different tasks, nevertheless display different synaptic plasticity rules contributing to differential sensory processing in these maps. 10.1152/jn.00506.2013
Altered expression and function of small-conductance (SK) Ca(2+)-activated K+ channels in pilocarpine-treated epileptic rats. Oliveira Mauro S,Skinner Frank,Arshadmansab Massoud F,Garcia Ileana,Mello Carlos F,Knaus Hans-Günther,Ermolinsky Boris S,Otalora Luis F Pacheco,Garrido-Sanabria Emilio R Brain research Small conductance calcium (Ca(2+)) activated SK channels are critical regulators of neuronal excitability in hippocampus. Accordingly, these channels are thought to play a key role in controlling neuronal activity in acute models of epilepsy. In this study, we investigate the expression and function of SK channels in the pilocarpine model of mesial temporal lobe epilepsy. For this purpose, protein expression was assessed using western blotting assays and gene expression was analyzed using TaqMan-based probes and the quantitative real-time polymerase chain reaction (qPCR) comparative method delta-delta cycle threshold ( big up tri, open big up tri, openCT) in samples extracted from control and epileptic rats. In addition, the effect of SK channel antagonist UCL1684 and agonist NS309 on CA1 evoked population spikes was studied in hippocampal slices. Western blotting analysis showed a significant reduction in the expression of SK1 and SK2 channels at 10days following status epilepticus (SE), but levels recovered at 1month and at more than 2months after SE. In contrast, a significant down-regulation of SK3 channels was detected after 10days of SE. Analysis of gene expression by qPCR revealed a significant reduction of transcripts for SK2 (Kcnn1) and SK3 (Kcnn3) channels as early as 10days following pilocarpine-induced SE and during the chronic phase of the pilocarpine model. Moreover, bath application of UCL1684 (100nM for 15min) induced a significant increase of the population spike amplitude and number of spikes in the hippocampal CA1 area of slices obtained control and chronic epileptic rats. This effect was obliterated by co-administration of UCL1684 with SK channel agonist NS309 (1microM). Application of NS309 failed to modify population spikes in the CA1 area of slices taken from control and epileptic rats. These data indicate an abnormal expression of SK channels and a possible dysfunction of these channels in experimental MTLE. 10.1016/j.brainres.2010.05.095
The sigma agonist 1,3-di-o-tolyl-guanidine directly blocks SK channels in dopaminergic neurons and in cell lines. Lamy Cédric,Scuvée-Moreau Jacqueline,Dilly Sébastien,Liégeois Jean-François,Seutin Vincent European journal of pharmacology Small conductance Ca(2+)-activated K(+) (SK) channels are widely expressed in the brain and underlie medium-duration afterhyperpolarizations (mAHPs) in many types of neurons. It was recently reported that the activation of sigma-1 (sigma(1)) receptors inhibits SK currents in rat hippocampus. Because many interactions between sigma receptors and brain dopaminergic systems have been reported, we set out to examine putative effects of sigma receptor ligands on the SK mediated mAHP in midbrain dopaminergic neurons. We found that 1,3-di-o-tolyl-guanidine (DTG) inhibited the mAHP in a concentration-dependent manner (approximately 60% inhibition at 100 microM), while other sigma receptor agonists (carbetapentane, (+)-SKF10047 and PRE-084) had little effect. Moreover, the effect of DTG was not affected by high concentrations of the sigma(1) receptor antagonist BD 1047. A role for sigma(2) receptors could also be excluded by the lack of effect of the sigma(2) receptor ligand 5-bromo-tetrahydroisoquinolinylbenzamide. These results argue against a coupling of sigma receptors to SK channels in dopaminergic neurons. We next hypothesized that DTG could directly block the channel. This hypothesis was tested in HEK-293 cells which were transiently transfected with rSK2 or hSK3 subunits. DTG inhibited the current flowing through both subtypes with mean IC(50)s approximately 200 microM. This action was also unaffected by BD 1047. Other sigma receptor ligands had little or no effect. We conclude that DTG directly blocks SK channels. This pharmacological action may be important to consider in future experimental settings. 10.1016/j.ejphar.2010.05.008
Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. Sonkusare Swapnil K,Dalsgaard Thomas,Bonev Adrian D,Nelson Mark T The Journal of physiology KEY POINTS:Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. ABSTRACT:Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels. 10.1113/JP271652
Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney. Li Yue,Hu Hongxiang,Butterworth Michael B,Tian Jin-Bin,Zhu Michael X,O'Neil Roger G PloS one The voltage- and Ca2+-activated, large conductance K+ channel (BK, maxi-K) is expressed in the collecting duct system of kidney where it underlies flow- and Ca2+-dependent K+ excretion. To determine if other Ca2+-activated K+ channels (KCa) may participate in this process, mouse kidney and the K+-secreting mouse cortical collecting duct (CCD) cell line, mCCDcl1, were assessed for TRPV4 and KCa channel expression and cross-talk. qPCR mRNA analysis and immunocytochemical staining demonstrated TRPV4 and KCa expression in mCCDcl1 cells and kidney connecting tubule (CNT) and CCD. Three subfamilies of KCa channels were revealed: the high Ca2+-binding affinity small-conductance SK channels, SK1and SK3, the intermediate conductance channel, IK1, and the low Ca2+-binding affinity, BK channel (BKα subunit). Apparent expression levels varied in CNT/CCD where analysis of CCD principal cells (PC) and intercalated cells (IC) demonstrated differential staining: SK1:PC<IC, and SK3:PC>IC, IK1:PC>IC, BKα:PC = IC, and TRPV4:PC>IC. Patch clamp analysis and fluorescence Ca2+ imaging of mCCDcl1 cells demonstrated potent TRPV4-mediated Ca2+ entry and strong functional cross-talk between TRPV4 and KCa channels. TRPV4-mediated Ca2+ influx activated each KCa channel, as evidenced by selective inhibition of KCa channels, with each active KCa channel enhancing Ca2+ entry (due to membrane hyperpolarization). Transepithelial electrical resistance (TEER) analysis of confluent mCCDcl1 cells grown on permeable supports further demonstrated this cross-talk where TRPV4 activation induce a decrease in TEER which was partially restored upon selective inhibition of each KCa channel. It is concluded that SK1/SK3 and IK1 are highly expressed along with BKα in CNT and CCD and are closely coupled to TRPV4 activation as observed in mCCDcl1 cells. The data support a model in CNT/CCD segments where strong cross talk between TRPV4-mediated Ca2+ influx and each KCa channel leads to enhance Ca2+ entry which will support activation of the low Ca2+-binding affinity BK channel to promote BK-mediated K+ secretion. 10.1371/journal.pone.0155006
Endothelial SK(Ca) and IK(Ca) channels regulate brain parenchymal arteriolar diameter and cortical cerebral blood flow. Hannah Rachael M,Dunn Kathryn M,Bonev Adrian D,Nelson Mark T Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism Calcium-sensitive potassium (K(Ca)) channels have been shown to modulate the diameter of cerebral pial arteries; however, little is known regarding their roles in controlling cerebral parenchymal arterioles (PAs). We explored the function and cellular distribution of small-conductance (SK(Ca)) and intermediate-conductance (IK(Ca)) K(Ca) channels and large-conductance K(Ca) (BK(Ca)) channels in endothelial cells (ECs) and smooth muscle cells (SMCs) of PAs. Both SK(Ca) and IK(Ca) channels conducted the outward current in isolated PA ECs (current densities, ~20 pA/pF and ~28 pA/pF at +40 mV, respectively), but these currents were not detected in PA SMCs. In contrast, BK(Ca) currents were prominent in PA SMCs (~154 pA/pF), but were undetectable in PA ECs. Pressurized PAs constricted to inhibition of SK(Ca) (~16%) and IK(Ca) (~16%) channels, but were only modestly affected by inhibition of BK(Ca) channels (~5%). Blockade of SK(Ca) and IK(Ca) channels decreased resting cortical cerebral blood flow (CBF) by ~15%. NS309 (6,7-dichloro-1H-indole-2,3-dione3-oxime), a SK(Ca)/IK(Ca) channel opener, hyperpolarized PA SMCs by ~27 mV, maximally dilated pressurized PAs, and increased CBF by ~40%. In conclusion, these data show that SK(Ca) and IK(Ca) channels in ECs profoundly modulate PA tone and CBF, whereas BK(Ca) channels in SMCs only modestly influence PA diameter. 10.1038/jcbfm.2010.214
Apamin-sensitive calcium-activated potassium currents (SK) are activated by persistent calcium currents in rat motoneurons. Li X,Bennett D J Journal of neurophysiology Low voltage-activated persistent inward calcium currents (Ca PICs) occur in rat motoneurons and are mediated by Cav1.3 L-type calcium channels (L-Ca current). The objectives of this paper were to determine whether this L-Ca current activates a sustained calcium-activated potassium current (SK current) and examine how such SK currents change with spinal injury. For comparison, the SK current that produces the postspike afterhyperpolarization (mAHP) was also quantified. Intracellular recordings were made from motoneurons of adult acute and chronic spinal rats while the whole sacrocaudal spinal cord was maintained in vitro. Spikes/AHPs were evoked with current injection or ventral root stimulation. Application of the SK channel blocker apamin completely eliminated the mAHP, which was not significantly different in chronic and acute spinal rats. The Ca PICs were measured with slow voltage ramps (or steps) with TTX to block sodium currents. In chronic spinal rats, the PICs were activated at -58.6 +/- 6.0 mV and were 2.2 +/- 1.2 nA in amplitude, significantly larger than in acute spinal rats. Apamin significantly increased the PIC, indicating that there was an SK current activated by L-Ca currents (SK(L) current), which ultimately reduced the net PIC. This SK(L) current was not different in acute and chronic spinal rats. The SK(AHP) and the SK(L) currents were activated by different calcium currents because the mAHP/SK(AHP) was blocked by the N, P-type calcium channel blocker omega-conotoxin MVIIC and was resistant to the L-type calcium channel blocker nimodipine, whereas the L-Ca and SK(L) currents were blocked by nimodipine. Furthermore, the SK(AHP) current activated within 10 ms of the spike, whereas the SK(L) current was delayed approximately 100 ms after the onset of the L-Ca current, suggesting that the SK(L) currents were not as spatially close to the L-Ca currents. Finally, the SK(L) and the L-Ca currents were poorly space clamped, with oscillations at their onset and hysteresis in their activation and deactivation voltages, consistent with currents of dendritic origin. The impact of these dendritic currents was especially pronounced in 15% of motoneurons, where apamin led to uncontrollable L-Ca currents that could not be deactivated, even with large hyperpolarizations of the soma. Thus, although the SK(L) currents are fairly small, they play a critical role in terminating the dendritic L-Ca currents. 10.1152/jn.01068.2006
Chemical modifications of the N-methyl-laudanosine scaffold point to new directions for SK channels exploration. Badarau Eduard,Dilly Sébastien,Wouters Johan,Seutin Vincent,Liégeois Jean-François Bioorganic & medicinal chemistry letters An asparagine or a histidine are present in a similar position in the outer pore region of SK2 and SK3 channels, respectively. Therefore, this structural difference was targeted in order to develop selective blockers of SK channel subtypes. Following docking investigations, based on theoretical models of truncated SK2 and SK3 channels, the benzyl side chain of N-methyl-laudanosine (NML) was functionalized in order to target this specific amino-acid residues. Chiral butanamide and benzyloxy analogues were prepared, resolved and tested for their affinity for SK2 and SK3 channels. Isoquinolinium (NMIQ) derivatives have a higher affinity for both SK channel subtypes than the corresponding derivative with no functionalized side chain. This trend was observed also for the 1,2,3,4-tetrahydroisoquinoline (THIQ) analogues. A benzyloxy functionalized NML enantiomer has a higher affinity than NML stereoisomers. Otherwise, the conserved affinity of these analogues led to the opportunity to further investigate in terms of possible labeling for in vivo investigations of the role of SK channels. 10.1016/j.bmcl.2014.10.083
Role of small conductance Ca²⁺-activated K⁺ channels in controlling CA1 pyramidal cell excitability. Chen Shmuel,Benninger Felix,Yaari Yoel The Journal of neuroscience : the official journal of the Society for Neuroscience Small-conductance Ca(2+)-activated K(+) (SK or K(Ca)2) channels are widely expressed in the CNS. In several types of neurons, these channels were shown to become activated during repetitive firing, causing early spike frequency adaptation. In CA1 pyramidal cells, SK channels in dendritic spines were shown to regulate synaptic transmission. However, the presence of functional SK channels in the somata and their role in controlling the intrinsic firing of these neurons has been controversial. Using whole-cell voltage-clamp and current-clamp recordings in acute hippocampal slices and focal applications of irreversible and reversible SK channel blockers, we provide evidence that functional SK channels are expressed in the somata and proximal dendrites of adult rat CA1 pyramidal cells. Although these channels can generate a medium duration afterhyperpolarizing current, they play only an auxiliary role in controlling the intrinsic excitability of these neurons, secondary to the low voltage-activating, noninactivating K(V)7/M channels. As long as K(V)7/M channels are operative, activation of SK channels during repetitive firing does not notably affect the spike output of CA1 pyramidal cells. However, when K(V)7/M channel activity is compromised, SK channel activation significantly and uniquely reduces spike output of these neurons. Therefore, proximal SK channels provide a "second line of defense" against intrinsic hyperexcitability, which may play a role in multiple conditions in which K(V)7/M channels activity is compromised, such as hyposmolarity. 10.1523/JNEUROSCI.0936-14.2014
Complementary functions of SK and Kv7/M potassium channels in excitability control and synaptic integration in rat hippocampal dentate granule cells. Mateos-Aparicio Pedro,Murphy Ricardo,Storm Johan F The Journal of physiology The dentate granule cells (DGCs) form the most numerous neuron population of the hippocampal memory system, and its gateway for cortical input. Yet, we have only limited knowledge of the intrinsic membrane properties that shape their responses. Since SK and Kv7/M potassium channels are key mechanisms of neuronal spiking and excitability control, afterhyperpolarizations (AHPs) and synaptic integration, we studied their functions in DGCs. The specific SK channel blockers apamin or scyllatoxin increased spike frequency (excitability), reduced early spike frequency adaptation, fully blocked the medium-duration AHP (mAHP) after a single spike or spike train, and increased postsynaptic EPSP summation after spiking, but had no effect on input resistance (Rinput) or spike threshold. In contrast, blockade of Kv7/M channels by XE991 increased Rinput, lowered the spike threshold, and increased excitability, postsynaptic EPSP summation, and EPSP-spike coupling, but only slightly reduced mAHP after spike trains (and not after single spikes). The SK and Kv7/M channel openers 1-EBIO and retigabine, respectively, had effects opposite to the blockers. Computational modelling reproduced many of these effects. We conclude that SK and Kv7/M channels have complementary roles in DGCs. These mechanisms may be important for the dentate network function, as CA3 neurons can be activated or inhibition recruited depending on DGC firing rate. 10.1113/jphysiol.2013.267872
Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Huang Chengjie G,Zhang Zhubo D,Chacron Maurice J Nature communications It is commonly assumed that neural systems efficiently process natural sensory input. However, the mechanisms by which such efficient processing is achieved, and the consequences for perception and behaviour remain poorly understood. Here we show that small conductance calcium-activated potassium (SK) channels enable efficient neural processing and perception of natural stimuli. Specifically, these channels allow for the high-pass filtering of sensory input, thereby removing temporal correlations or, equivalently, whitening frequency response power. Varying the degree of adaptation through pharmacological manipulation of SK channels reduced efficiency of coding of natural stimuli, which in turn gave rise to predictable changes in behavioural responses that were no longer matched to natural stimulus statistics. Our results thus demonstrate a novel mechanism by which the nervous system can implement efficient processing and perception of natural sensory input that is likely to be shared across systems and species. 10.1038/ncomms11353
Calcium activated potassium channel expression during human iPS cell-derived neurogenesis. Linta Leonhard,Boeckers Tobias M,Kleger Alexander,Liebau Stefan Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis. 10.1016/j.aanat.2013.02.009
SK channels and calmodulin. Adelman John P Channels (Austin, Tex.) Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca(2+) levels. Mirroring the importance and the breadth of Ca(2+) signaling, free Ca(2+) levels are tightly controlled, and a myriad of Ca(2+) binding proteins transduce Ca(2+) signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca(2+) binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca(2+) ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca(2+)-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. 10.1080/19336950.2015.1029688
Small-Conductance Ca-Activated K Channel 2 in the Dorsal Horn of Spinal Cord Participates in Visceral Hypersensitivity in Rats. Song Yu,Zhu Jun-Sheng,Hua Rong,Du Lei,Huang Si-Ting,Stackman Robert W,Zhang Gongliang,Zhang Yong-Mei Frontiers in pharmacology Visceral hypersensitivity is a highly complex and subjective phenomenon associated with multiple levels of the nervous system and a wide range of neurotransmission. The dorsal horn (DH) in spinal cord relays the peripheral sensory information into the brain. Small conductance Ca-activated K (SK) channels regulate neuronal excitability and firing by allowing K to efflux in response to increase in the intracellular Ca level. In this study, we examined the influence of SK2 channels in the spinal DH on the pathogenesis of visceral hypersensitivity induced by colorectal distension (CRD) in rats. Electrophysiological results showed that rats with visceral hypersensitivity presented a decrease in the SK channel-mediated afterhyperpolarization current (), and an increase in neuronal firing rates and -Fos positive staining in the spinal DH. Western blot data revealed a decrease in the SK2 channel protein in the membrane fraction. Moreover, intrathecal administration of the SK2 channel activator 1-EBIO or CyPPA alleviated visceral hypersensitivity, reversed the decrease in and the increase in neuronal firing rates in spinal DH in rats that experienced CRD. 1-EBIO or CyPPA effect could be prevented by SK2 channel blocker apamin. CRD induced an increase in -Fos protein expression in the spinal DH, which was prevented by 1-EBIO. Together, these data suggest that visceral hypersensitivity and pain is associated with a decrease in the number and function of membrane SK2 channels in the spinal DH. Pharmacological manipulation of SK2 channels may open a new avenue for the treatment of visceral hypersensitivity and pain. -Neonatal colorectal distension induced visceral hypersensitivity in rats.-Visceral hypersensitivity rats presented a decrease in afterhyperpolarization current () and membrane SK2 channel protein in the spinal dorsal horn.-Visceral hypersensitivity rats presented an increase in neuronal firing rate in the spinal dorsal horn.-Intrathecal administration of SK2 channel activator 1-EBIO or CyPPA prevented visceral hypersensitivity and decrease in . 10.3389/fphar.2018.00840
Differential distribution of SK channel subtypes in the brain of the weakly electric fish Apteronotus leptorhynchus. Ellis Lee D,Maler Leonard,Dunn Robert J The Journal of comparative neurology Calcium signals in vertebrate neurons can induce hyperpolarizing membrane responses through the activation of Ca(2+)-activated potassium channels. Of these, small conductance (SK) channels regulate neuronal responses through the generation of the medium after-hyperpolarization (mAHP). We have previously shown that an SK channel (AptSK2) contributes to signal processing in the electrosensory system of Apteronotus leptorhynchus. It was shown that for pyramidal neurons in the electrosensory lateral line lobe (ELL), AptSK2 expression selectively decreases responses to low-frequency signals. The localization of all the SK subunits throughout the brain of Apteronotus then became of substantial interest. We have now cloned two additional SK channel subunits from Apteronotus and determined the expression patterns of all three AptSK subunits throughout the brain. In situ hybridization experiments have revealed that, as in mammalian systems, the AptSK1 and 2 channels showed a partially overlapping expression pattern, whereas the AptSK3 channel was expressed in different brain areas. The AptSK1 and 2 channels were the primary subunits found in the major electrosensory processing areas. Immunohistochemistry further revealed distinct compartmentalization of the AptSK1 and 2 channels in the ELL. AptSK1 was localized to the apical dendrites of pyramidal neurons, whereas AptSK2 channels are primarily somatic. The distinct expression patterns of all three AptSK channels may reflect subtype-specific contributions to neuronal function, and the high homology between subtypes from a number of species suggests that the functional roles for each channel subtype are conserved from early vertebrate evolution. 10.1002/cne.21597
SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Ji H,Shepard P D Neuroscience Apamin-sensitive, SK channels play an important role in generating the rhythmic firing patterns exhibited by midbrain dopamine neurons in vitro. However, their contribution to the firing properties of these cells in intact animals has yet to be determined. In the present series of experiments, extracellular single unit recording techniques were used to assess the central effects of prototypical SK channel ligands on the firing pattern of dopamine neurons in the substantia nigra of the chloral hydrate anesthetized rat. I.v. administration of the SK channel blocker apamin (0.4 mg/kg), increased bursting activity in approximately 50% of the dopamine neurons tested without altering average firing rate. The majority of these cells responded slowly to the effects of apamin, gradually transitioning from an irregular single spike to a phasic discharge composed of the same relative proportion of long (>or=three spike) and short (two spike) bursts as "natural" bursting activity recorded in drug naive animals. Local administration of apamin increased bursting activity in all cells tested. Systemic administration of the SK channel opener, 1-ethyl-2-benzimidazolinone (5-25 mg/kg) also had no effect on average firing rate but suppressed bursting activity and increased the precision of firing. The effects of 1-ethyl-2-benzimidazolinon on firing pattern were abolished when recording electrodes contained apamin (125 microM). These results suggest that SK channels actively contribute to the spontaneous firing patterns exhibited by dopamine neurons in vivo and provide additional support for the proposition that this channel could serve as a useful target for modifying their activity. 10.1016/j.neuroscience.2006.02.020
Targeting the Small- and Intermediate-Conductance Ca-Activated Potassium Channels: The Drug-Binding Pocket at the Channel/Calmodulin Interface. Cui Meng,Qin Guangrong,Yu Kunqian,Bowers M Scott,Zhang Miao Neuro-Signals The small- and intermediate-conductance Ca(2+)-activated potassium (SK/IK) channels play important roles in the regulation of excitable cells in both the central nervous and cardiovascular systems. Evidence from animal models has implicated SK/IK channels in neurological conditions such as ataxia and alcohol use disorders. Further, genome-wide association studies have suggested that cardiovascular abnormalities such as arrhythmias and hypertension are associated with single nucleotide polymorphisms that occur within the genes encoding the SK/IK channels. The Ca(2+) sensitivity of the SK/IK channels stems from a constitutively bound Ca(2+)-binding protein: calmodulin. Small-molecule positive modulators of SK/IK channels have been developed over the past decade, and recent structural studies have revealed that the binding pocket of these positive modulators is located at the interface between the channel and calmodulin. SK/IK channel positive modulators can potentiate channel activity by enhancing the coupling between Ca(2+) sensing via calmodulin and mechanical opening of the channel. Here, we review binding pocket studies that have provided structural insight into the mechanism of action for SK/IK channel positive modulators. These studies lay the foundation for structure-based drug discovery efforts that can identify novel SK/IK channel positive modulators. 10.1159/000367896
Expanding role of SK channels in cardiac electrophysiology. Mahida Saagar Heart rhythm The small conductance calcium-activated potassium (SK) channels are an important group of potassium-selective ion channels. SK channels display more pronounced expression in the atrium relative to the ventricle. Current evidence relating to the functional role of SK channels in the atria is conflicting and whether these channels contribute to atrial repolarization under physiological circumstances is a matter of debate. Multiple studies have, however, reported that SK channels are important mediators of proarrhythmogenic electrical remodeling in the atria. In keeping with their expression profile, SK channels do not appear to play a prominent role in ventricular repolarization. SK channels represent potentially attractive therapeutic targets for atrial fibrillation. A number of pharmacological modulators of SK channels have been tested in animal models of atrial fibrillation. However, these studies have also demonstrated inconsistent results and have raised important questions regarding the proarrhythmogenic potential of SK channel modulation. These findings have important implications for drug development. This review summarizes the role of SK channels in cardiac electrophysiology and discusses the potential role of these channels as therapeutic targets. 10.1016/j.hrthm.2014.03.045
Roles of the Drosophila SK channel (dSK) in courtship memory. Abou Tayoun Ahmad N,Pikielny Claudio,Dolph Patrick J PloS one A role for SK channels in synaptic plasticity has been very well-characterized. However, in the absence of simple genetic animal models, their role in behavioral memory remains elusive. Here, we take advantage of Drosophila melanogaster with its single SK gene (dSK) and well-established courtship memory assay to investigate the contribution of this channel to memory. Using two independent dSK alleles, a null mutation and a dominant negative subunit, we show that while dSK negatively regulates the acquisition of short-term memory 30 min after a short training session, it is required for normal long-term memory 24 h after extended training. These findings highlight important functions for dSK in courtship memory and suggest that SK channels can mediate multiple forms of behavioral plasticity. 10.1371/journal.pone.0034665
Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system. Gymnopoulos Marco,Cingolani Lorenzo A,Pedarzani Paola,Stocker Martin The Journal of comparative neurology Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development. 10.1002/cne.23466
EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK-calmodulin interaction. Li Weiyan,Halling David B,Hall Amelia W,Aldrich Richard W The Journal of general physiology Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca(2+) via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca(2+) and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca(2+)-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca(2+). These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca(2+)-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca(2+) affinity than WT CaM. 10.1085/jgp.200910295
Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca²⁺-sensing and SK channel activation. Zhang Miao,Pascal John M,Zhang Ji-Fang Proceedings of the National Academy of Sciences of the United States of America Most proteins, such as ion channels, form well-organized 3D structures to carry out their specific functions. A typical voltage-gated potassium channel subunit has six transmembrane segments (S1-S6) to form the voltage-sensing domain and the pore domain. Conformational changes of these domains result in opening of the channel pore. Intrinsically disordered (ID) proteins/peptides are considered equally important for the protein functions. However, it is difficult to explore the structural features underlying the functions of ID proteins/peptides by conventional methods, such as X-ray crystallography, because of the flexibility of their secondary structures. Unlike voltage-gated potassium channels, families of small- and intermediate-conductance Ca(2+)-activated potassium (SK/IK) channels with important roles in regulating membrane excitability are activated exclusively by Ca(2+)-bound calmodulin (CaM). Upon binding of Ca(2+) to CaM, a 2 × 2 structure forms between CaM and the CaM-binding domain. A channel fragment that connects S6 and the CaM-binding domain is not visible in the protein crystal structure, suggesting that this fragment is an ID fragment. Here we show that the conformation of the ID fragment in SK channels becomes readily identifiable in the presence of NS309, the most potent compound that potentiates the channel activities. This well-defined conformation of the ID fragment, stabilized by NS309, increases the channel open probability at a given Ca(2+) concentration. Our results demonstrate that the ID fragment, itself a target for drugs modulating SK channel activities, plays a unique role in coupling Ca(2+) sensing by CaM and mechanical opening of SK channels. 10.1073/pnas.1220253110
Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Church Timothy W,Weatherall Kate L,Corrêa Sonia A L,Prole David L,Brown Jon T,Marrion Neil V The European journal of neuroscience The activation of small conductance calcium-dependent (SK) channels regulates membrane excitability by causing membrane hyperpolarization. Three subtypes (SK1-3) have been cloned, with each subtype expressed within the nervous system. The locations of channel subunits overlap, with SK1 and SK2 subunits often expressed in the same brain region. We showed that expressed homomeric rat SK1 subunits did not form functional channels, because subunits accumulated in the Golgi. This raised the question of whether heteromeric channels could form with SK1 subunits. The co-expression of SK1 and SK2 subunits in HEK293 cells preferentially co-assembled to produce heteromeric channels with a fixed stoichiometry of alternating subunits. The expression in hippocampal CA1 neurons of mutant rat SK1 subunits [rat SK1(LV213/4YA)] that produced an apamin-sensitive current changed the amplitude and pharmacology of the medium afterhyperpolarization. The overexpression of rat SK1(LV213/4YA) subunits reduced the sensitivity of the medium afterhyperpolarization to apamin, substantiating the preferential co-assembly of SK1 and SK2 subunits to form heteromeric channels. Species-specific channel assembly occurred as the co-expression of human SK1 with rat SK2 did not form functional heteromeric channels. The replacement of two amino acids within the C-terminus of rat SK2 with those from human SK2 permitted the assembly of heteromeric channels when co-expressed with human SK1. These data showed that species-specific co-assembly was mediated by interaction between the C-termini of SK channel subunits. The finding that SK channels preferentially co-assembled to form heteromeric channels suggested that native heteromeric channels will predominate in cells expressing multiple SK channel subunits. 10.1111/ejn.12789
Cloning and characterization of SK2 channel from chicken short hair cells. Matthews T M,Duncan R K,Zidanic M,Michael T H,Fuchs P A Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74+/-0.17 microM. The expressed channels were blocked by apamin (IC(50)=73.3+/-5.0 pM) and d-tubocurarine (IC(50)=7.6+/-1.0 microM), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates. 10.1007/s00359-005-0601-4
Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Sailer Claudia A,Kaufmann Walter A,Marksteiner Josef,Knaus Hans-Günther Molecular and cellular neurosciences To investigate the distribution of all three SK channel subunits in the mouse central nervous system, we performed immunohistochemistry using sequence-specific antibodies directed against SK1, SK2, and SK3 proteins. Expression of SK1 and SK2 proteins revealed a partly overlapping distribution pattern restricted to a limited number of brain areas (e.g., neocortex, hippocampal formation). In contrast, SK3 immunoreactivity was rather complementary and predominantly detected in phylogenetically older brain regions like basal ganglia, thalamus, and various brain stem nuclei (e.g., locus coeruleus, tegmental nuclei). At the cellular level, SK1- and SK2-like immunoreactivity was primarily localized to somatic and dendritic structures, whereas the majority of SK3-like immunoreactivity was associated with varicose fibers. 10.1016/j.mcn.2004.03.002
Increased small conductance calcium-activated potassium type 2 channel-mediated negative feedback on N-methyl-D-aspartate receptors impairs synaptic plasticity following context-dependent sensitization to morphine. Fakira Amanda K,Portugal George S,Carusillo Brianna,Melyan Zare,Morón Jose A Biological psychiatry BACKGROUND:Hippocampal long-term potentiation (LTP) is impaired following repeated morphine administration paired with a novel context. This procedure produces locomotor sensitization that can be abolished by blocking calcium (Ca(2+))-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the hippocampus. However, the mechanisms underlying LTP impairment remain unclear. Here, we investigate the role of N-methyl-D-aspartate receptors (NMDARs), AMPARs, and small conductance Ca(2+)-activated potassium type 2 (SK2) channels in LTP induction after context-dependent sensitization to morphine. METHODS:Mice were treated with saline or escalating doses of morphine (5, 8, 10, and 15 mg/kg) every 12 hours in a locomotor activity chamber and a challenge dose of 5 mg/kg morphine was given 1 week later. After the challenge, the hippocampi were removed to assay phosphatase 2A (PP2A) activity, NMDAR, and SK2 channel synaptic expression or to perform electrophysiological recordings. RESULTS:Impaired hippocampal LTP, which accompanied morphine-induced context-dependent sensitization, could not be restored by blocking Ca(2+)-permeable AMPARs. Context-dependent sensitization to morphine altered hippocampal NMDAR subunit composition and enhanced the SK2 channel-mediated negative feedback on NMDAR. Increased PP2A activity observed following context-dependent sensitization suggests that the potentiated SK2 channel effect on NMDAR was mediated by increased SK2 sensitivity to Ca(2+). Finally, inhibition of SK2 channel or PP2A activity restored LTP. CONCLUSIONS:Our studies demonstrate that the SK2 channel-NMDAR feedback loop plays a role in opiate-induced impairment of hippocampal plasticity and that the positive modulation of SK2 channels occurs via increases in PP2A activity. This provides further evidence that small conductance Ca(2+)-activated potassium channels play a role in drug-induced plasticity. 10.1016/j.biopsych.2013.04.026
Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Tuteja Dipika,Xu Danyan,Timofeyev Valeriy,Lu Ling,Sharma Dipika,Zhang Zhao,Xu Yanfang,Nie Liping,Vázquez Ana E,Young J Nilas,Glatter Kathryn A,Chiamvimonvat Nipavan American journal of physiology. Heart and circulatory physiology Small-conductance Ca2+-activated K+ channels (SK channels, KCa channels) have been reported in excitable cells, where they aid in integrating changes in intracellular Ca2+ with membrane potential. We recently reported for the first time the functional existence of SK2 (KCa2.2) channels in human and mouse cardiac myocytes. Here, we report cloning of SK1 (KCa2.1) and SK3 (KCa2.3) channels from mouse atria and ventricles using RT-PCR. Full-length transcripts and their variants were detected for both SK1 and SK3 channels. Variants of mouse SK1 channel (mSK1) differ mainly in the COOH-terminal structure, affecting a portion of the sixth transmembrane segment (S6) and the calmodulin binding domain (CaMBD). Mouse SK3 channel (mSK3) differs not only in the number of polyglutamine repeats in the NH2 terminus but also in the intervening sequences between the polyglutamine repeats. Full-length cardiac mSK1 and mSK3 show 99 and 91% nucleotide identity with those of mouse colon SK1 and SK3, respectively. Quantification of SK1, SK2, and SK3 transcripts between atria and ventricles was performed using real-time quantitative RT-PCR from single, isolated cardiomyocytes. SK1 transcript was found to be more abundant in atria compared with ventricles, similar to the previously reported finding for SK2 channel. In contrast, SK3 showed similar levels of expression in atria and ventricles. Together, our data are the first to indicate the presence of the three different isoforms of SK channels in heart and the differential expression of SK1 and SK2 in mouse atria and ventricles. Because of the marked differential expression of SK channel isoforms in heart, specific ligands for Ca2+-activated K+ currents may offer a unique therapeutic opportunity to modify atrial cells without interfering with ventricular myocytes. 10.1152/ajpheart.00534.2005
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Cueni Lucius,Canepari Marco,Luján Rafael,Emmenegger Yann,Watanabe Masahiko,Bond Chris T,Franken Paul,Adelman John P,Lüthi Anita Nature neuroscience T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep. 10.1038/nn.2124
F-box protein-32 down-regulates small-conductance calcium-activated potassium channel 2 in diabetic mouse atria. Ling Tian-You,Yi Fu,Lu Tong,Wang Xiao-Li,Sun Xiaojing,Willis Monte S,Wu Li-Qun,Shen Win-Kuang,Adelman John P,Lee Hon-Chi The Journal of biological chemistry Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation, but the underlying ionic mechanism for this association remains unclear. We recently reported that expression of the small-conductance calcium-activated potassium channel 2 (SK2, encoded by ) in atria from diabetic mice is significantly down-regulated, resulting in reduced SK currents in atrial myocytes from these mice. We also reported that the level of SK2 mRNA expression is not reduced in DM atria but that the ubiquitin-proteasome system (UPS), a major mechanism of intracellular protein degradation, is activated in vascular smooth muscle cells in DM. This suggests a possible role of the UPS in reduced SK currents. To test this possibility, we examined the role of the UPS in atrial SK2 down-regulation in DM. We found that a muscle-specific E3 ligase, F-box protein 32 (FBXO-32, also called atrogin-1), was significantly up-regulated in diabetic mouse atria. Enhanced FBXO-32 expression in atrial cells significantly reduced SK2 protein expression, and siRNA-mediated FBXO-32 knockdown increased SK2 protein expression. Furthermore, co-transfection of SK2 with FBXO-32 complementary DNA in HEK293 cells significantly reduced SK2 expression, whereas co-transfection with atrogin-1ΔF complementary DNA (a nonfunctional FBXO-32 variant in which the F-box domain is deleted) did not have any effects on SK2. These results indicate that FBXO-32 contributes to SK2 down-regulation and that the F-box domain is essential for FBXO-32 function. In conclusion, DM-induced SK2 channel down-regulation appears to be due to an FBXO-32-dependent increase in UPS-mediated SK2 protein degradation. 10.1074/jbc.RA118.003837
A novel isoform of SK2 assembles with other SK subunits in mouse brain. Strassmaier Timothy,Bond Chris T,Sailer Claudia A,Knaus Hans-Guenther,Maylie James,Adelman John P The Journal of biological chemistry The SK2 subtype of small conductance Ca2+-activated K+ channels is widely distributed throughout the central nervous system and modulates neuronal excitability by contributing to the afterhyperpolarization that follows an action potential. Western blots of brain membrane proteins prepared from wild type and SK2-null mice reveal two isoforms of SK2, a 49-kDa band corresponding to the previously reported SK2 protein (SK2-S) and a novel 78-kDa form. Complementary DNA clones from brain and Western blots probed with an antibody specific for the longer form, SK2-L, identified the larger molecular weight isoform as an N-terminally extended SK2 protein. The N-terminal extension of SK2-L is cysteine-rich and mediates disulfide bond formation between SK2-L subunits or with heterologous proteins. Immunohistochemistry revealed that in brain SK2-L and SK2-S are expressed in similar but not identical patterns. Heterologous expression of SK2-L results in functional homomeric channels with Ca2+ sensitivity similar to that of SK2-S, consistent with their shared core and intracellular C-terminal domains. In contrast to the diffuse, uniform surface distribution of SK2-S, SK2-L channels cluster into sharply defined, distinct puncta suggesting that the extended cysteine-rich N-terminal domain mediates this process. Immunoprecipitations from transfected cells and mouse brain demonstrate that SK2-L co-assembles with the other SK subunits. Taken together, the results show that the SK2 gene encodes two subunit proteins and suggest that native SK2-L subunits may preferentially partition into heteromeric channel complexes with other SK subunits. 10.1074/jbc.M413125200
SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Ohtsuki Gen,Piochon Claire,Adelman John P,Hansel Christian Neuron Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we find that somatic depolarization or parallel fiber (PF) burst stimulation induce long-term amplification of synaptic responses to climbing fiber (CF) or PF stimulation and enhance the amplitude of passively propagated sodium spikes. Dendritic plasticity is mimicked and occluded by the SK channel blocker apamin and is absent in Purkinje cells from SK2 null mice. Triple-patch recordings from two dendritic sites and the soma and confocal calcium imaging studies show that local stimulation limits dendritic plasticity to the activated compartment of the dendrite. This plasticity mechanism allows Purkinje cells to adjust the SK2-mediated control of dendritic excitability in an activity-dependent manner. 10.1016/j.neuron.2012.05.025
Uncovering a Role for SK2 in Angelman Syndrome. Lizarraga Sofia B,Morrow Eric M Cell reports Angelman syndrome is a severe neurodevelopmental disorder caused by mutations in UBE3A. Sun et al. (2015) report SK2 as a UBE3A substrate and provide insight into the molecular mechanisms that might underlie impaired neuronal function in individuals affected by Angelman syndrome. 10.1016/j.celrep.2015.07.009
[Construction and identification of the expression plasmid of SK2 (KCNN2) gene from human atrial myocytes with overlapping PCR]. Tan Xiao-Qiu,Chen Gui-Lan,Li Tao,Mao Liang,Inoue Isao,Yang Yan,Zeng Xiao-Rong Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology OBJECTIVE:Small conductance calcium activated potassium channels type 2 (SK2) play a crucial role in atrial repolarization. It is difficult to acquire the full-length of its coded gene KCNN2 by RT-PCR with one step. We aim to get the full-length of KCNN2 gene and construct the plasmid by Overlapping PCR, and further more discuss the application of Overlapping PCR. METHODS:Total RNA was extracted from human right atrial tissue and cDNA was acquired with reverse transcription. Overlapping PCR was conducted with three pairs of primers which were designed according to the sequence of KCNN2 (AY258141) gene. The expression plasmid of pIRES-hrGFP-SK2 was constructed by directed cloning with restriction enzyme site and identified by enzyme cutting and sequencing. RESULTS:Three parts of PCR amplification were consistent with predicted size. The sequence of the plasmid was consistent with the gene-bank data except two sites, however, which were the same as gene in different tissues. CONCLUSION:The expression plasmid pIRES-hrGFP-SK2 was constructed successfully. Overlapping PCR is a good choice for amplifying these genes with long size or low expression.
Synaptobrevin-2 facilitates the trafficking and function of atrial SK2 channel. Li Tao,Fan Xuehui,Yu Yiyan,Chen Linlin,Huang Wenjun,Yang Yan,Cao Jimin,Zeng Xiaorong,Tan Xiaoqiu Science China. Life sciences 10.1007/s11427-017-9139-7
Transcriptional regulation of intronic calcium-activated potassium channel SK2 promoters by nuclear factor-kappa B and glucocorticoids. Kye Min-Jeong,Spiess Joachim,Blank Thomas Molecular and cellular biochemistry Small-conductance Ca(2+)-activated K(+) channels (SK) of the SK2 subtype are widely expressed in the central nervous system where they contribute to the control of neuronal excitability. Two SK2 isoforms, SK2-S and SK2-L, the latter representing an N-terminally extended protein of SK2-S, are expressed in similar patterns in the brain. However, our understanding of mechanisms by which the expression of SK2 is regulated is limited. We identified one functional glucocorticoid response element (GRE) at position -2248 bp and two functional nuclear factor-kappB (NF-kappaB) response elements at positions -1652 and -1586 bp in the SK2-S promoter. An increase in SK2-S promoter activity was observed in PC12 cells transiently transfected with a wild-type SK2-S promoter-luciferase reporter gene construct and treated with aldosterone or dexamethasone. The mineralocorticoid receptor (MR) antagonist spironolactone or the glucocorticoid receptor (GR) antagonist mifepristone fully inhibited aldosterone or dexamethasone activation of the SK2-S promoter, respectively. SK2-S promoter activity was also induced by the cell-permeable ceramide analog, N-acetylsphingosine (C2-ceramide). Antisense oligonucleotides directed to NF-kappaB p65 or p50 suppressed SK2-S transcription induced by C2-ceramide. Deletion studies showed that only the -1586 bp NF-kappaB binding site was necessary for maximum C2-ceramide response. Finally, we showed that activation of GRs but not of MRs repressed the NF-kappaB-mediated induction of SK2-S transcription. These findings suggest a possible transcriptional cross talk between GRs and NF-kappaB in the intronic promoter regulation of SK2-S channel gene transcription. 10.1007/s11010-006-9320-6
[Application of recording SK2 current in human atrial myocytes by perforated patch clamp techniques with the mix of beta-escin and amphotericin B]. Wang Hua,Li Tao,Lei Ming,Li Miao-ling,Ding Yin-yuan,Yang Yan,Zeng Xiao-rong Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology OBJECTIVE:To establish a perforated patch-clamp technology with amphotericin B and beta-escin and to research the regulation of small conductance calcium-activated potassium channel SK2 currents by calcium ions. METHODS:Single human atrial myocytes were enzymatically isolated from the right atrial appendage. Amphotericin B and / or beta-escin were used by perforated electrode liquid. The regulation of SK2 current by calcium ions in human atrial myocytes was performed with the perforated patch-clamp technique. The intracellular calcium changes were measured by the intracellular calcium test system. RESULTS:Mixed perforated electrode liquid compared with 150 microg/ml amphotericin B or 6.88 microg/ml beta-escin alone, it was easy to seal cells and activate SK2 current by the former method. Moreover, the ration of F340/380 was consistent with the change of intracellular free calcium ion concentration increase after the formation of perforation. The ration of F340/380 was measured by intracellular calcium test system. CONCLUSION:The appropriate concentration of amphotericin B mixed with beta-escin can form a stable whole-cell patch recording technology that is appropriate for the research of SK2 current regulation by intracellular calcium.
Identification and characterization of a novel, shorter isoform of the small conductance Ca2+ -activated K+ channel SK2. Murthy Saravana R K,Teodorescu Georgeta,Nijholt Ingrid M,Dolga Amalia M,Grissmer Stephan,Spiess Joachim,Blank Thomas Journal of neurochemistry Throughout the CNS, small conductance Ca(2+)-activated potassium (SK) channels modulate firing frequency and neuronal excitability. We have identified a novel, shorter isoform of standard SK2 (SK2-std) in mouse brain which we named SK2-sh. SK2-sh is alternatively spliced at exon 3 and therefore lacks 140 amino acids, which include transmembrane domains S3, S4 and S5, compared with SK2-std. Western blot analysis of mouse hippocampal tissue revealed a 47 kDa protein product as predicted for SK2-sh along with a 64 kDa band representing the standard SK2 isoform. Electrophysiological recordings from transiently expressed SK2-sh revealed no functional channel activity or interaction with SK2-std. With the help of real-time PCR, we found significantly higher expression levels of SK2-sh mRNA in cortical tissue from AD cases when compared with age-matched controls. A similar increase in SK2-sh expression was induced in cortical neurons from mice by cytokine exposure. Substantial clinical evidence suggests that excess cytokines are centrally involved in the pathogenesis of Alzheimer's disease. Thus, SK2-sh as a downstream target of cytokines, provide a promising target for additional investigation regarding potential therapeutic intervention. 10.1111/j.1471-4159.2008.05557.x
Coassembly and coupling of SK2 channels and mGlu5 receptors. García-Negredo Gloria,Soto David,Llorente Javier,Morató Xavier,Galenkamp Koen M O,Gómez-Soler Maricel,Fernández-Dueñas Víctor,Watanabe Masahiko,Adelman John P,Shigemoto Ryuichi,Fukazawa Yugo,Luján Rafael,Ciruela Francisco The Journal of neuroscience : the official journal of the Society for Neuroscience Group I metabotropic glutamate (mGlu) receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca(2+) wave-dependent activation of small-conductance Ca(2+)-activated K(+) (SK) channels. Here, we show that mGlu5 receptors and SK2 channels coassemble in heterologous coexpression systems and in rat brain. Further, in cotransfected cells or rat primary hippocampal neurons, mGlu5 receptor stimulation activated apamin-sensitive SK2-mediated K(+) currents. In addition, coexpression of mGlu5 receptors and SK2 channels promoted plasma membrane targeting of both proteins and correlated with increased mGlu5 receptor function that was unexpectedly blocked by apamin. These results demonstrate a reciprocal functional interaction between mGlu5 receptors and SK2 channels that reflects their molecular coassembly. 10.1523/JNEUROSCI.2038-14.2014
Localization of SK2 channels relative to excitatory synaptic sites in the mouse developing Purkinje cells. Ballesteros-Merino Carmen,Martínez-Hernández José,Aguado Carolina,Watanabe Masahiko,Adelman John P,Luján Rafael Frontiers in neuroanatomy Small-conductance, Ca(2+)-activated K(+) (SK) channels regulate neuronal excitability in a variety of ways. To understand their roles in different neuronal subtypes it is important to determine their precise subcellular distribution. Here, we used biochemical, light microscopy immunohistochemical and immunoelectron microscopy techniques, combined with quantitative approaches, to reveal the expression and subcellular localization patterns of SK2 in the developing cerebellum. Using western blots, the SK2 protein showed a progressive increase during postnatal development. At the light microscopic level, SK2 immunoreactivity was very prominent in the developing Purkinje cells (PC), particularly in the molecular layer (ML). Electron microscopy revealed that throughout development SK2 was mostly detected at the extrasynaptic and perisynaptic plasma membrane of dendritic shafts and dendritic spines of PCs. However, there was some localization at axon terminals as well. Quantitative analyses and 3D reconstructions further revealed a progressive developmental change of SK2 on the surface of PCs from dendritic shafts to dendritic spines. Together, these results indicate that SK2 channels undergo dynamic spatial regulation during cerebellar development, and this process is associated with the formation and maturation of excitatory synaptic contacts to PCs. 10.3389/fnana.2014.00154
SK2 channel expression and function in cerebellar Purkinje cells. Hosy Eric,Piochon Claire,Teuling Eva,Rinaldo Lorenzo,Hansel Christian The Journal of physiology Small-conductance calcium-activated K(+) channels (SK channels) regulate the excitability of neurons and their responsiveness to synaptic input patterns. SK channels contribute to the afterhyperpolarization (AHP) following action potential bursts, and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here we review evidence that SK2 channels are expressed in rat cerebellar Purkinje cells during development and throughout adulthood, and play a key role in diverse cellular processes such as the regulation of the spike firing frequency and the modulation of calcium transients in dendritic spines. In Purkinje cells as well as in other types of neurons, SK2 channel plasticity seems to provide an important mechanism allowing these cells to adjust their intrinsic excitability and to alter the probabilities for the induction of synaptic learning correlates, such as long-term potentiation (LTP). 10.1113/jphysiol.2011.205823
Neuron Class and Target Variability in the Three-Dimensional Localization of SK2 Channels in Hippocampal Neurons as Detected by Immunogold FIB-SEM. Luján Rafael,Merchán-Pérez Angel,Soriano Joaquim,Martín-Belmonte Alejandro,Aguado Carolina,Alfaro-Ruiz Rocío,Moreno-Martínez Ana Esther,DeFelipe Javier Frontiers in neuroanatomy Small-conductance calcium-activated potassium (SK) channels are crucial for learning and memory. However, many aspects of their spatial organization in neurons are still unknown. In this study, we have taken a novel approach to answering these questions combining a pre-embedding immunogold labeling with an automated dual-beam electron microscope that integrates focused ion beam milling and scanning electron microscopy (FIB/SEM) to gather 3D map ultrastructural and biomolecular information simultaneously. Using this new approach, we evaluated the number and variability in the density of extrasynaptic SK2 channels in 3D reconstructions from six dendritic segments of excitatory neurons and six inhibitory neurons present in the of the CA1 region of the mouse. SK2 immunoparticles were observed throughout the surface of hippocampal neurons, either scattered or clustered, as well as at intracellular sites. Quantitative volumetric evaluations revealed that the extrasynaptic SK2 channel density in spines was seven times higher than in dendritic shafts and thirty-five times higher than in interneurons. Spines showed a heterogeneous population of SK2 expression, some spines having a high SK2 content, others having a low content and others lacking SK2 channels. SK2 immunonegative spines were significantly smaller than those immunopositive. These results show that SK2 channel density differs between excitatory and inhibitory neurons and demonstrates a large variability in the density of SK2 channels in spines. Furthermore, we demonstrated that SK2 expression was associated with excitatory synapses, but not with inhibitory synapses in CA1 pyramidal cells. Consequently, regulation of excitability and synaptic plasticity by SK2 channels is expected to be neuron class- and target-specific. These data show that immunogold FIB/SEM represent a new powerful EM tool to correlate structure and function of ion channels with nanoscale resolution. 10.3389/fnana.2021.781314
A reduction in SK channels contributes to increased activity of hypothalamic magnocellular neurons during heart failure. Ferreira-Neto Hildebrando C,Biancardi Vinicia C,Stern Javier E The Journal of physiology KEY POINTS:Small conductance Ca -activated K (SK) channels play an important role in regulating the excitability of magnocellular neurosecretory cells (MNCs). Although an increased SK channel function contributes to adaptive physiological responses, it remains unknown whether changes in SK channel function/expression contribute to exacerbated MNC activity under disease conditions. We show that the input-output function of MNCs in heart failure (HF) rats is enhanced. Moreover, the SK channel blocker apamin enhanced the input-output function in sham, although not in HF rats. We found that both the after-hyperpolarizing potential magnitude and the underlying apamin-sensitive I are blunted in MNCs from HF rats. The magnitude of spike-induced increases in intracellular Ca levels was not affected in MNCs of HF rats. We found a diminished expression of SK2/SK3 channel subunit mRNA expression in the supraoptic nucleus of HF rats. Our studies suggest that a reduction in SK channel expression, but not changes in Ca -mediated activation of SK channels, contributes to exacerbated MNC activity in HF rats. ABSTRACT:Small conductance Ca -activated K channels (SK) play an important role in regulating the activity of magnocellular neurosecretory cells (MNCs) and hormone release from the posterior pituitary. Moreover, enhanced SK activity contributes to the adaptive responses of MNCs to physiological challenge, such as lactation. Nevertheless, whether changes in SK function/expression contribute to exacerbated MNC activity during diseases such as heart failure (HF) remains unknown. In the present study, we used a combination of patch clamp electrophysiology, confocal Ca imaging and molecular biology in a rat model of ischaemic HF. We found that the input-output function of MNCs was enhanced in HF compared to sham rats. Moreover, although the SK blocker apamin (200 nm) strengthened the input-output function in sham rats, it failed to have an effect in HF rats. The magnitude of the after-hyperpolarizing potential (AHP) following a train of spikes and the underlying apamin-sensitive I were blunted in MNCs from HF rats. However, spike-induced increases in intracellular Ca were not affected in the MNCs of HF rats. Real-time PCR measurements of SK channel subunits mRNA in supraoptic nucleus punches revealed a diminished expression of SK2/SK3 subunits in HF compared to sham rats. Together, our studies demonstrate that MNCs from HF rats exhibit increased membrane excitability and an enhanced input-output function, and also that a reduction in SK channel-mediated, apamin-sensitive AHP is a critical contributing mechanism. Moreover, our results suggest that the reduced AHP is related to a down-regulation of SK2/SK3 channel subunit expression but not the result of a blunted activity-dependent intracellular Ca increase following a burst of action potentials. 10.1113/JP274730
Calcium-activated SK potassium channels are key modulators of the pacemaker frequency in locus coeruleus neurons. Matschke Lina A,Rinné Susanne,Snutch Terrance P,Oertel Wolfgang H,Dolga Amalia M,Decher Niels Molecular and cellular neurosciences The physiological, intrinsic activity of noradrenergic locus coeruleus (LC) neurons is important for the control of sleep/wakefulness, cognition and autonomous body functions. Dysregulations of the LC-noradrenergic network contribute to the pathogenesis of psychiatric disorders and are key findings in early stages of neurodegenerative diseases. Therefore, identifying ion channels mediating the intrinsic pacemaking mechanism of LC neurons, which is in turn directly coupled to Ca homeostasis and cell survival signaling pathways, can help to foster our understanding of the vulnerability of these neurons in neurodegenerative diseases. Small-conductance Ca-activated K (SK) channels regulate the intrinsic firing patterns in different central neurons and are essential regulators of the intracellular Ca homeostasis. However, the role of SK channels for the intrinsic pacemaking of LC neurons in mice is still unclear. Therefore we performed qPCR expression analysis as well as patch clamp recordings of in vitro brainstem slices, for instance testing SK channel blockers and activators like apamin and NS309, respectively. Although we found a transcriptional expression of SK1, SK2 and SK3 channels, SK2 was the predominantly expressed subunit in mouse LC neurons. Using perforated-patch clamp experiments, we found that SK channels are essential regulators of the intrinsic pacemaking of LC neurons, mediating a large fraction of the afterhyperpolarization (AHP) in these cells. Consistent with a previous observation that a concerted action of L- and T-type Cav channels is essential for the pacemaking of LC neurons, we found that SK channel activation, and the respective AHP amplitude, is primarily coupled to Ca influx via these types of Ca channels. Our study identified SK2 channels as drug targets for the tuning of the pacemaker frequency in disorders involving a dysregulation of the LC. 10.1016/j.mcn.2018.03.002
Coupling of SK channels, L-type Ca channels, and ryanodine receptors in cardiomyocytes. Zhang Xiao-Dong,Coulibaly Zana A,Chen Wei Chun,Ledford Hannah A,Lee Jeong Han,Sirish Padmini,Dai Gu,Jian Zhong,Chuang Frank,Brust-Mascher Ingrid,Yamoah Ebenezer N,Chen-Izu Ye,Izu Leighton T,Chiamvimonvat Nipavan Scientific reports Small-conductance Ca-activated K (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca microdomains necessary for SK channel activation. SK currents coupled with Ca influx via L-type Ca channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca store, suggesting that LTCCs provide the immediate Ca microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca1.2 Ca channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca signaling. 10.1038/s41598-018-22843-3
Synaptic Potential and Plasticity of an SK2 Channel Gate Regulate Spike Burst Activity in Cerebellar Purkinje Cells. Ohtsuki Gen,Hansel Christian iScience Neurons store information and participate in memory engrams as a result of experience-dependent changes in synaptic weights and in membrane excitability. Here, we examine excitatory postsynaptic potential (EPSP) amplitude and neuronal excitability in relation to these two mechanisms of plasticity. We analyze somato-dendritic double-patch recordings from cerebellar Purkinje cells while inducing intrinsic, SK2 channel-dependent plasticity or blocking SK channels with bath application of apamin. Both manipulations increase the build-up of EPSP amplitudes during an EPSP train and enhance the number of EPSP-evoked spikes, yielding insights into the mechanistic contribution of EPSP amplitude to single spikes and spike bursts. EPSP amplitude has an impact on whether spikes are fired or not, but direct measures of excitability (spike threshold/AHP) are better predictors of whether individual spikes or spike bursts are fired. Our findings show that Purkinje cell spiking is synaptically driven but that burst firing is gated by SK2 channel modulation and plasticity. 10.1016/j.isci.2018.02.001
An Intracellular Allosteric Modulator Binding Pocket in SK2 Ion Channels Is Shared by Multiple Chemotypes. Cho Lily T-Y,Alexandrou Aristos J,Torella Rubben,Knafels John,Hobbs Jake,Taylor Toni,Loucif Alex,Konopacka Agnieszka,Bell Sigourney,Stevens Edward B,Pandit Jay,Horst Reto,Withka Jane M,Pryde David C,Liu Shenping,Young Gareth T Structure (London, England : 1993) Small conductance potassium (SK) ion channels define neuronal firing rates by conducting the after-hyperpolarization current. They are key targets in developing therapies where neuronal firing rates are dysfunctional, such as in epilepsy, Parkinson's, and amyotrophic lateral sclerosis (ALS). Here, we characterize a binding pocket situated at the intracellular interface of SK2 and calmodulin, which we show to be shared by multiple small-molecule chemotypes. Crystallization of this complex revealed that riluzole (approved for ALS) and an analog of the anti-ataxic agent (4-chloro-phenyl)-[2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidin-4-yl]-amine (CyPPA) bind to and allosterically modulate via this site. Solution-state nuclear magnetic resonance demonstrates that riluzole, NS309, and CyPPA analogs bind at this bipartite pocket. We demonstrate, by patch-clamp electrophysiology, that both classes of ligand interact with overlapping but distinct residues within this pocket. These data define a clinically important site, laying the foundations for further studies of the mechanism of action of riluzole and related molecules. 10.1016/j.str.2018.02.017
Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function. Kim Gukhan,Luján Rafael,Schwenk Jochen,Kelley Melissa H,Aguado Carolina,Watanabe Masahiko,Fakler Bernd,Maylie James,Adelman John P eLife Mouse CA1 pyramidal neurons express apamin-sensitive SK2-containing channels in the post-synaptic membrane, positioned close to NMDA-type (N-methyl-D-aspartate) glutamate receptors. Activated by synaptically evoked NMDAR-dependent Ca(2+) influx, the synaptic SK2-containing channels modulate excitatory post-synaptic responses and the induction of synaptic plasticity. In addition, their activity- and protein kinase A-dependent trafficking contributes to expression of long-term potentiation (LTP). We have identified a novel synaptic scaffold, MPP2 (membrane palmitoylated protein 2; p55), a member of the membrane-associated guanylate kinase (MAGUK) family that interacts with SK2-containing channels. MPP2 and SK2 co-immunopurified from mouse brain, and co-immunoprecipitated when they were co-expressed in HEK293 cells. MPP2 is highly expressed in the post-synaptic density of dendritic spines on CA1 pyramidal neurons. Knocking down MPP2 expression selectively abolished the SK2-containing channel contribution to synaptic responses and decreased LTP. Thus, MPP2 is a novel synaptic scaffold that is required for proper synaptic localization and function of SK2-containing channels. 10.7554/eLife.12637
SK2 Channels Associate With mGlu Receptors and Ca2.1 Channels in Purkinje Cells. Luján Rafael,Aguado Carolina,Ciruela Francisco,Arus Xavier Morató,Martín-Belmonte Alejandro,Alfaro-Ruiz Rocío,Martínez-Gómez Jesús,de la Ossa Luis,Watanabe Masahiko,Adelman John P,Shigemoto Ryuichi,Fukazawa Yugo Frontiers in cellular neuroscience The small-conductance, Ca-activated K (SK) channel subtype SK2 regulates the spike rate and firing frequency, as well as Ca transients in Purkinje cells (PCs). To understand the molecular basis by which SK2 channels mediate these functions, we analyzed the exact location and densities of SK2 channels along the neuronal surface of the mouse cerebellar PCs using SDS-digested freeze-fracture replica labeling (SDS-FRL) of high sensitivity combined with quantitative analyses. Immunogold particles for SK2 were observed on post- and pre-synaptic compartments showing both scattered and clustered distribution patterns. We found an axo-somato-dendritic gradient of the SK2 particle density increasing 12-fold from soma to dendritic spines. Using two different immunogold approaches, we also found that SK2 immunoparticles were frequently adjacent to, but never overlap with, the postsynaptic density of excitatory synapses in PC spines. Co-immunoprecipitation analysis demonstrated that SK2 channels form macromolecular complexes with two types of proteins that mobilize Ca: Ca2.1 channels and mGlu receptors in the cerebellum. Freeze-fracture replica double-labeling showed significant co-clustering of particles for SK2 with those for Ca2.1 channels and mGlu receptors. SK2 channels were also detected at presynaptic sites, mostly at the presynaptic active zone (AZ), where they are close to Ca2.1 channels, though they are not significantly co-clustered. These data demonstrate that SK2 channels located in different neuronal compartments can associate with distinct proteins mobilizing Ca, and suggest that the ultrastructural association of SK2 with Ca2.1 and mGlu provides the mechanism that ensures voltage (excitability) regulation by distinct intracellular Ca transients in PCs. 10.3389/fncel.2018.00311
The interactions of apamin and tetraethylammonium are differentially affected by single mutations in the pore mouth of small conductance calcium-activated potassium (SK) channels. Dilly Sébastien,Philippart Fabian,Lamy Cédric,Poncin Sylvie,Snyders Dirk,Seutin Vincent,Liégeois Jean-François Biochemical pharmacology Valine residues in the pore region of SK2 (V366) and SK3 (V520) were replaced by either an alanine or a phenylalanine to evaluate the impact on the interactions with the allosteric blocker apamin. Unlike TEA which showed high sensitivity to phenylalanine mutated channels, the binding affinity of apamin to the phenylalanine mutants was strongly reduced. In addition, currents from phenylalanine mutants were largely resistant to block by apamin. On the other hand, when the valine residue was replaced by an alanine residue, an increase of the binding affinity and the amount of block by apamin was observed for alanine mutated SK2 channels, but not for mutated SK3 channels. Interestingly, the VA mutation reduced the sensitivity to TEA. In silico data confirmed these experimental results. Therefore, such mutations in the pore region of SK channels show that the three-dimensional structure of the SK tetramers can be disorganized in the outer pore region leading to reduced interaction of apamin with its target. 10.1016/j.bcp.2012.12.015
Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Lee Chia-Hsueh,MacKinnon Roderick Science (New York, N.Y.) Small-conductance Ca-activated K (SK) channels mediate neuron excitability and are associated with synaptic transmission and plasticity. They also regulate immune responses and the size of blood cells. Activation of SK channels requires calmodulin (CaM), but how CaM binds and opens SK channels has been unclear. Here we report cryo-electron microscopy (cryo-EM) structures of a human SK4-CaM channel complex in closed and activated states at 3.4- and 3.5-angstrom resolution, respectively. Four CaM molecules bind to one channel tetramer. Each lobe of CaM serves a distinct function: The C-lobe binds to the channel constitutively, whereas the N-lobe interacts with the S4-S5 linker in a Ca-dependent manner. The S4-S5 linker, which contains two distinct helices, undergoes conformational changes upon CaM binding to open the channel pore. These structures reveal the gating mechanism of SK channels and provide a basis for understanding SK channel pharmacology. 10.1126/science.aas9466
PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts. Hamilton Shanna,Polina Iuliia,Terentyeva Radmila,Bronk Peter,Kim Tae Yun,Roder Karim,Clements Richard T,Koren Gideon,Choi Bum-Rak,Terentyev Dmitry The Journal of physiology KEY POINTS:Small-conductance Ca -activated K (SK) channels expressed in ventricular myocytes are dormant in health, yet become functional in cardiac disease. SK channels are voltage independent and their gating is controlled by intracellular [Ca ] in a biphasic manner. Submicromolar [Ca ] activates the channel via constitutively-bound calmodulin, whereas higher [Ca ] exerts inhibitory effect during depolarization. Using a rat model of cardiac hypertrophy induced by thoracic aortic banding, we found that functional upregulation of SK2 channels in hypertrophic rat ventricular cardiomyocytes is driven by protein kinase A (PKA) phosphorylation. Using site-directed mutagenesis, we identified serine-465 as the site conferring PKA-dependent effects on SK2 channel function. PKA phosphorylation attenuates I rectification by reducing the Ca /voltage-dependent inhibition of SK channels without changing their sensitivity to activating submicromolar [Ca ] . This mechanism underlies the functional recruitment of SK channels not only in cardiac disease, but also in normal physiology, contributing to repolarization under conditions of enhanced adrenergic drive. ABSTRACT:Small-conductance Ca -activated K (SK) channels expressed in ventricular myocytes (VMs) are dormant in health, yet become functional in cardiac disease. We aimed to test the hypothesis that post-translational modification of SK channels under conditions accompanied by enhanced adrenergic drive plays a central role in disease-related activation of the channels. We investigated this phenomenon using a rat model of hypertrophy induced by thoracic aortic banding (TAB). Western blot analysis using anti-pan-serine/threonine antibodies demonstrated enhanced phosphorylation of immunoprecipitated SK2 channels in VMs from TAB rats vs. Shams, which was reversible by incubation of the VMs with PKA inhibitor H89 (1 μmol L ). Patch clamped VMs under basal conditions from TABs but not Shams exhibited outward current sensitive to the specific SK inhibitor apamin (100 nmol L ), which was eliminated by inhibition of PKA (1 μmol L ). Beta-adrenergic stimulation (isoproterenol, 100 nmol L ) evoked I in VMs from Shams, resulting in shortening of action potentials in VMs and ex vivo optically mapped Sham hearts. Using adenoviral gene transfer, wild-type and mutant SK2 channels were overexpressed in adult rat VMs, revealing serine-465 as the site that elicits PKA-dependent phosphorylation effects on SK2 channel function. Concurrent confocal Ca imaging experiments established that PKA phosphorylation lessens rectification of I via reduction Ca /voltage-dependent inhibition of the channels at high [Ca ] without affecting their sensitivity to activation by Ca in the submicromolar range. In conclusion, upregulation of SK channels in diseased VMs is mediated by hyperadrenergic drive in cardiac hypertrophy, with functional effects on the channel conferred by PKA-dependent phosphorylation at serine-465. 10.1113/JP277618
Small-conductance calcium-activated potassium type 2 channels (SK2, KCa2.2) in human brain. Willis Michael,Trieb Maria,Leitner Irmgard,Wietzorrek Georg,Marksteiner Josef,Knaus Hans-Günther Brain structure & function SK2 (KCa2.2) channels are voltage-independent Ca-activated K channels that regulate neuronal excitability in brain regions important for memory formation. In this study, we investigated the distribution and expression of SK2 channels in human brain by Western blot analysis and immunohistochemistry. Immunoblot analysis of human brain indicated expression of four distinct SK2 channel isoforms: the standard, the long and two short isoforms. Immunohistochemistry in paraffin-embedded post-mortem brain sections was performed in the hippocampal formation, amygdala and neocortex. In hippocampus, SK2-like immunoreactivity could be detected in strata oriens and radiatum of area CA1-CA2 and in the molecular layer. In the amygdala, SK2-like immunoreactivity was highest in the basolateral nuclei, while in neocortex, staining was mainly found enriched in layer V. Activation of SK2 channels is thought to regulate neuronal excitability in brain by contributing to the medium afterhyperpolarization. However, SK2 channels are blocked by apamin with a sensitivity that suggests heteromeric channels. The herein first shown expression of SK2 human isoform b in brain could explain the variability of electrophysiological findings observed with SK2 channels. 10.1007/s00429-016-1258-1
Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, α-actinin2 and filamin A. Zhang Zheng,Ledford Hannah A,Park Seojin,Wang Wenying,Rafizadeh Sassan,Kim Hyo Jeong,Xu Wilson,Lu Ling,Lau Victor C,Knowlton Anne A,Zhang Xiao-Dong,Yamoah Ebenezer N,Chiamvimonvat Nipavan The Journal of physiology KEY POINTS:Ion channels are transmembrane proteins that are synthesized within the cells but need to be trafficked to the cell membrane for the channels to function. Small-conductance, Ca -activated K channels (SK, K 2) are unique subclasses of K channels that are regulated by Ca inside the cells; they are expressed in human atrial myocytes and responsible for shaping atrial action potentials. We have previously shown that interacting proteins of SK2 channels are important for channel trafficking to the membrane. Using total internal reflection fluorescence (TIRF) and confocal microscopy, we studied the mechanisms by which the surface membrane localization of SK2 (K 2.2) channels is regulated by their interacting proteins. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. ABSTRACT:The normal function of ion channels depends critically on the precise subcellular localization and the number of channel proteins on the cell surface membrane. Small-conductance, Ca -activated K channels (SK, K 2) are expressed in human atrial myocytes and are responsible for shaping atrial action potentials. Understanding the mechanisms of SK channel trafficking may provide new insights into the regulation controlling the repolarization of atrial myocytes. We have previously demonstrated that the C- and N-termini of SK2 channels interact with the actin-binding proteins α-actinin2 and filamin A, respectively. However, the roles of the interacting proteins on SK2 channel trafficking remain incompletely understood. Using total internal reflection fluorescence (TIRF) microscopy, we studied the mechanisms of surface membrane localization of SK2 (K 2.2) channels. When SK2 channels were co-expressed with filamin A or α-actinin2, the membrane fluorescence intensity of SK2 channels increased significantly. We next tested the effects of primaquine and dynasore on SK2 channels expression. Treatment with primaquine significantly reduced the membrane expression of SK2 channels. In contrast, treatment with dynasore failed to alter the surface membrane expression of SK2 channels. Further investigations using constitutively active or dominant-negative forms of Rab GTPases provided additional insights into the distinct roles of the two cytoskeletal proteins on the recycling processes of SK2 channels from endosomes. α-Actinin2 facilitated recycling of SK2 channels from both early and recycling endosomes while filamin A probably aids the recycling of SK2 channels from recycling endosomes. 10.1113/JP272942
Functional interaction of Junctophilin 2 with small- conductance Ca -activated potassium channel subtype 2(SK2) in mouse cardiac myocytes. Fan H K,Luo T X,Zhao W D,Mu Y H,Yang Y,Guo W J,Tu H Y,Zhang Q Acta physiologica (Oxford, England) AIM:Junctophilins (JPs), a protein family of the junctional membrane complex, maintain the close conjunction between cell surface and intracellular membranes in striate muscle cells mediating the crosstalk between extracellular Ca entry and intracellular Ca release. The small-conductance Ca -activated K channels are activated by the intracellular calcium and play an essential role in the cardiac action potential profile. Molecular mechanisms of regulation of the SK channels are still uncertain. Here, we sought to determine whether there is a functional interaction of junctophilin type 2 (JP2) with the SK channels and whether JP2 gene silencing might modulate the function of SK channels in cardiac myocytes. METHODS:Association of JP2 with SK2 channel in mouse heart tissue as well as HEK293 cells was studied using in vivo and in vitro approaches. siRNA knockdown of JP2 gene was assessed by real-time PCR. The expression of proteins was analysed by Western blotting. Ca -activated K current (I ) in infected adult mouse cardiac myocytes was recorded using whole-cell voltage-clamp technique. The intracellular Ca transient was measured using an IonOptix photometry system. RESULTS:We showed for the first time that JP2 associates with the SK2 channel in native cardiac tissue. JP2, via the membrane occupation and recognition nexus (MORN motifs) in its N-terminus, directly interacted with SK2 channels. A colocalization of the SK2 channel with its interaction protein of JP2 was found in the cardiac myocytes. Moreover, we demonstrated that JP2 is necessary for the proper cell surface expression of the SK2 channel in HEK293. Functional experiments indicated that knockdown of JP2 caused a significant decrease in the density of I and reduced the amplitude of the Ca transient in infected cardiomyocytes. CONCLUSION:The present data provide evidence that the functional interaction between JP2 and SK2 channels is present in the native mouse heart tissue. Junctophilin 2, as junctional membrane complex (JMC) protein, is an important regulator of the cardiac SK channels. 10.1111/apha.12986
Hydrophobic interactions between the HA helix and S4-S5 linker modulate apparent Ca sensitivity of SK2 channels. Nam Young-Woo,Cui Meng,Orfali Razan,Viegas Adam,Nguyen Misa,Mohammed Eman H M,Zoghebi Khalid A,Rahighi Simin,Parang Keykavous,Zhang Miao Acta physiologica (Oxford, England) AIM:Small-conductance Ca -activated potassium (SK) channels are activated exclusively by increases in intracellular Ca that binds to calmodulin constitutively associated with the channel. Wild-type SK2 channels are activated by Ca with an EC value of ~0.3 μmol/L. Here, we investigate hydrophobic interactions between the HA helix and the S4-S5 linker as a major determinant of channel apparent Ca sensitivity. METHODS:Site-directed mutagenesis, electrophysiological recordings and molecular dynamic (MD) simulations were utilized. RESULTS:Mutations that decrease hydrophobicity at the HA-S4-S5 interface lead to Ca hyposensitivity of SK2 channels. Mutations that increase hydrophobicity result in hypersensitivity to Ca . The Ca hypersensitivity of the V407F mutant relies on the interaction of the cognate phenylalanine with the S4-S5 linker in the SK2 channel. Replacing the S4-S5 linker of the SK2 channel with the S4-S5 linker of the SK4 channel results in loss of the hypersensitivity caused by V407F. This difference between the S4-S5 linkers of SK2 and SK4 channels can be partially attributed to I295 equivalent to a valine in the SK4 channel. A N293A mutation in the S4-S5 linker also increases hydrophobicity at the HA-S4-S5 interface and elevates the channel apparent Ca sensitivity. The double N293A/V407F mutations generate a highly Ca sensitive channel, with an EC of 0.02 μmol/L. The MD simulations of this double-mutant channel revealed a larger channel cytoplasmic gate. CONCLUSION:The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca sensitivity of SK2 channels. 10.1111/apha.13552
The MORN domain of Junctophilin2 regulates functional interactions with small-conductance Ca -activated potassium channel subtype2 (SK2). Luo Tianxia,Li Liren,Peng Yanghao,Xie Rongrong,Yan Ningning,Fan Hongkun,Zhang Qian BioFactors (Oxford, England) Small-conductance Ca -activated K channel subtype2 (SK2) are stable macromolecular complexes that regulate myocardial excitability and Ca homeostasis. Junctophilin-2 (JP2) is a membrane-binding protein, which provides functional crosstalk by physically linking with the cell-surface and intracellular ion channels. We previously demonstrated that the MORN domain of JP2 interacts with SK2 channels. However, the roles of the JP2 MORN domain in regulating the precise subcellular localization and molecular modulation of SK2 have not yet been incompletely understood. In the present study, in vitro and in vivo assays were used to confirm the physical interactions between the SK2 channel and JP2 in H9c2 and HEK293 cells, with a concentration on the association between the C-terminus of SK2 channels and the MORN domain of JP2. Furthermore, the membrane expression of SK2 were found to be significantly impaired by the mutation or knockdown of JP2. Using immunofluorescence staining along with Golgi/early endosome markers, we studied the mechanisms of JP2-regulated SK2 membrane trafficking, which indicates that the JP2 MORN domain is probably necessary for the retrograde trafficking of SK2 channels. The functional study demonstrates that whole cell SK2 current densities recorded from the HEK293 cells co-expressing the JP2-MORN domain with SK2 were significantly augmented, compared with cells expressing SK2 alone. Our findings suggest that the MORN domain of JP2 directly modulates SK2 channel current amplitude and trafficking, through its interaction with an overlapping region of the JP2 MORN domain on the SK2 C-terminus. 10.1002/biof.1608