加载中

    Advanced nanotechnology for hypoxia-associated antitumor therapy. Zhao Lirong,Fu Changhui,Tan Longfei,Li Ting,Zhong Hongshan,Meng Xianwei Nanoscale Hypoxia is a hallmark of the tumor microenvironment, which promotes the proliferation, metastasis and invasion of tumors and stimulates the resistance of cancer treatments, leading to the serious consequence of tumor recurrence. Many nanotechnology-based studies have been conducted to improve the efficacy of cancer treatments using a hypoxia strategy. This is usually achieved by (i) activating bioreductive prodrugs in the tumor hypoxic/exacerbated hypoxic microenvironment, or (ii) delivering therapeutic agents to hypoxic tumor tissue using targeting molecules. Normally, a good therapeutic effect can be expected upon modulating the hypoxic microenvironment for tumor treatments. To achieve this, various nanotechnology strategies based on overcoming hypoxia have been exploited to alleviate tumor hypoxia and enhance the therapeutic efficacy of tumor therapy, including (i) reducing oxygen consumption by inhibiting cell respiration, (ii) normalizing tumor vessels to promote blood flow in the tumor, (iii) carrying exogenous oxygen into the tumor, and (iv) generating oxygen in situ. The strategy of in situ oxygen production is refined, and the scope of this strategy is further expanded. Finally, the inspiration of using advanced nanotechnology in hypoxia-associated antitumor therapy guides the study of tumor hypoxia for clinical use. 10.1039/c9nr09071a
    Trends in Nanotechnology for in vivo Cancer Diagnosis: Products and Patents. do Nascimento Tatielle,Tavares Melanie,Monteiro Mariana S S B,Santos-Oliveira Ralph,Todeschini Adriane R,de Souza Vilênia T,Ricci-Júnior Eduardo Current pharmaceutical design BACKGROUND:Cancer is a set of diseases formed by abnormal growth of cells leading to the formation of the tumor. The diagnosis can be made through symptoms' evaluation or imaging tests, however, the techniques are limited and the tumor detection may be late. Thus, pharmaceutical nanotechnology has emerged to optimize the cancer diagnosis through nanostructured contrast agent's development. OBJECTIVE:This review aims to identify commercialized nanomedicines and patents for cancer diagnosis. METHODS:The databases used for scientific articles research were Pubmed, Science Direct, Scielo and Lilacs. Research on companies' websites and articles for the recognition of commercial nanomedicines was performed. The Derwent tool was applied for patent research. RESULTS:This article aimed to research on nanosystems based on nanoparticles, dendrimers, liposomes, composites and quantum dots, associated to imaging techniques. Commercialized products based on metal and composite nanoparticles, associated with magnetic resonance and computed tomography, have been observed. The research conducted through Derwent tool displayed a small number of patents using nanotechnology for cancer diagnosis. Among these patents, the most significant number was related to the use of systems based on metal nanoparticles, composites and quantum dots. CONCLUSION:Although few systems are found in the market and patented, nanotechnology appears as a promising field for the development of new nanosystems in order to optimize and accelerate the cancer diagnosis. 10.2174/1381612826666200219094853
    Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Tang Wei,Fan Wenpei,Lau Joseph,Deng Liming,Shen Zheyu,Chen Xiaoyuan Chemical Society reviews Brain cancer, especially the most common type of glioblastoma, is highly invasive and known as one of the most devastating and deadly neoplasms. Despite surgical and medical advances, the prognosis for most brain cancer patients remains dismal and the median survival rarely exceeds 16 months. Drug delivery to the brain is significantly hindered by the existence of the blood-brain barrier (BBB), which serves as a protective semi-permeable membrane for the central nervous system. Recent breakthroughs in nanotechnology have yielded multifunctional theranostic nanoplatforms with the ability to cross or bypass the BBB, enabling accurate diagnosis and effective treatment of brain tumours. Herein, we make our efforts to present a comprehensive review on the latest remarkable advances in BBB-crossing nanotechnology, with an emphasis on the judicious design of multifunctional nanoplatforms for effective BBB penetration, efficient tumour accumulation, precise tumour imaging, and significant tumour inhibition of brain cancer. The detailed elucidation of BBB-crossing nanotechnology in this review is anticipated to attract broad interest from researchers in diverse fields to participate in the establishment of powerful BBB-crossing nanoplatforms for highly efficient brain cancer theranostics. 10.1039/c8cs00805a
    Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance. Gao Yan,Shen Jacson K,Milane Lara,Hornicek Francis J,Amiji Mansoor M,Duan Zhenfeng Current medicinal chemistry Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.
    Leveraging the interplay of nanotechnology and neuroscience: Designing new avenues for treating central nervous system disorders. Smith Elizabeth S,Porterfield Joshua E,Kannan Rangaramanujam M Advanced drug delivery reviews Nanotechnology has the potential to open many novel diagnostic and treatment avenues for disorders of the central nervous system (CNS). In this review, we discuss recent developments in the applications of nanotechnology in CNS therapies, diagnosis and biology. Novel approaches for the diagnosis and treatment of neuroinflammation, brain dysfunction, psychiatric conditions, brain cancer, and nerve injury provide insights into the potential of nanomedicine. We also highlight nanotechnology-enabled neuroscience techniques such as electrophysiology and intracellular sampling to improve our understanding of the brain and its components. With nanotechnology integrally involved in the advancement of basic neuroscience and the development of novel treatments, combined diagnostic and therapeutic applications have begun to emerge. Nanotheranostics for the brain, able to achieve single-cell resolution, will hasten the rate in which we can diagnose, monitor, and treat diseases. Taken together, the recent advances highlighted in this review demonstrate the prospect for significant improvements to clinical diagnosis and treatment of a vast array of neurological diseases. However, it is apparent that a strong dialogue between the nanoscience and neuroscience communities will be critical for the development of successful nanotherapeutics that move to the clinic, benefit patients, and address unmet needs in CNS disorders. 10.1016/j.addr.2019.02.009
    An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Fachel Flávia Nathiely Silveira,Schuh Roselena Silvestri,Veras Kleyton Santos,Bassani Valquíria Linck,Koester Letícia Scherer,Henriques Amelia Teresinha,Braganhol Elizandra,Teixeira Helder Ferreira Neurochemistry international Neurodegenerative disorders (ND) are characterized by slow and progressive neuronal dysfunction induced by the degeneration of neuronal cells in the central nervous system (CNS). Recently, the neuroprotective effects of natural compounds with anti-inflammatory and antioxidant activities has been clearly demonstrated. This appears to be an attractive therapeutic approach for ND, particularly regarding the use of polyphenols. In this review, we present an overview of the neuroprotective potential of rosmarinic acid (RA) and discuss the use of nanotechnology as a novel approach to treating ND. RA presents a variety of biological important activities, i.e. the modulation of pro-inflammatory cytokine expression, prevention of neurodegeneration and damage reduction. However, its poor bioavailability represents a limitation in terms of pharmacodynamics. In this sense, nanotechnology-based carriers could allow for the administration of higher but still safe amounts of RA, aiming for CNS delivery. Nasal administration could be a pleasant route for delivery to the CNS, as this represents a direct route to the CNS. With these advantages, RA-loaded nanotechnology-based therapy through the nasal route could be promising approach for the treatment of ND. 10.1016/j.neuint.2018.11.003
    Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Moura Rui Pedro,Martins Cláudia,Pinto Soraia,Sousa Flávia,Sarmento Bruno Expert opinion on drug delivery INTRODUCTION:The blood-brain barrier (BBB) is a highly limiting barrier that prevents the brain from contacting with several circulating molecules, including harmful agents. However, certain systemic nutrients and macromolecules are able to cross the BBB and reach the brain parenchyma, involving the interaction with multiple receptors and/or transporters at the BBB surface. Nanotechnology allows the creation of drug vehicles, functionalized with targeting ligands for binding specific BBB receptors and/or transporters, hence triggering the transport through this biobarrier. AREAS COVERED:This review focuses the BBB receptors/transporters to be exploited in regard to their overall structure and biologic function, as well as their role in the development of strategies envisaging drug delivery to the brain. Then, the interplay between the targeting of these BBB receptors/transporters and nanotechnology is explored, as they can increase by several-fold the effectiveness of brain-targeted therapies. EXPERT OPINION:Nanomedicine may be particularly useful in brain drug delivery, mainly due to the possibility of functionalizing nanoparticles to target specific receptors/transporters. Since the BBB is endowed with numerous receptors and transporters responsible for regulating the proper metabolic activity of the brain, their targeting can be a promising bypass strategy to circumvent the hurdle that the BBB represents for brain drug delivery. 10.1080/17425247.2019.1583205
    Nanotechnology in ovarian cancer: Diagnosis and treatment. Barani Mahmood,Bilal Muhammad,Sabir Fakhara,Rahdar Abbas,Kyzas George Z Life sciences To overcome the drawbacks of conventional delivery, this review spotlights a number of nanoscale drug delivery systems, including nanoparticles, liposomes, nano micelles, branched dendrimers, nanocapsules, and nanostructured lipid formulations for the targeted therapy of ovarian cancer. These nanoformulations offer numerous advantages to promote therapeutic drug delivery such as nontoxicity, biocompatibility, good biodegradability, increased therapeutic impact than free drugs, and non-inflammatory effects. Importantly, the development of specific ligands functionalized nanoformulations enable preferential targeting of ovarian tumors and eventually amplify the therapeutic potential compared to nonfunctionalized counterparts. Ovarian cancer is typically identified by biomarker assessment such as CA125, HE4, Mucin 1, and prostatic. There is, nevertheless, a tremendous demand for less costly, faster, and compact medical tools, both for timely detection and ovarian cancer control. This paper explored multiple types of tumor marker-based on nanomaterial biosensors. Initially, we mention different forms of ovarian cancer biomarkers involving CA125, human epididymis protein 4 (HE4), mucin 1 (MUC1), and prostate. It is accompanied by a brief description of new nanotechnology methods for diagnosis. Nanobiosensors for evaluating ovarian cancer biomarkers can be categorized based on electrochemical, optical, paper-based, giant magnetoresistive, and lab-on-a-chip devices. 10.1016/j.lfs.2020.118914
    Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Lamichhane Shrawani,Lee Sangkil Archives of pharmacal research Albumin is a biocompatible, non-immunogenic and versatile drug carrier system. It has been widely used to extend the half-life, enhance stability, provide protection from degradation and allow specific targeting of therapeutic agents to various disease states. Understanding the role of albumin as a drug delivery and distribution system has increased remarkably in the recent years from the development of albumin-binding prodrugs to albumin as a drug carrier system. The extraordinary surface property of albumin makes it possible to bind various endogenous and exogenous molecules. This review succinctly deals with several albumin-drug conjugates and nanoparticles along with their preparation techniques and focuses on surface-modified albumin and targeting of albumin formulation to specific organs and tissues. It also summarizes research efforts on albumin nanoparticles used for delivering drugs to tumor cells and describes their role in permeation through tumor vasculature and in receptor mediated endocytosis, which is also described in this review. The versatility of albumin and ease of preparation makes it a suitable drug carrier system, swhich is the major objective of this review. 10.1007/s12272-020-01204-7
    Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adir Omer,Poley Maria,Chen Gal,Froim Sahar,Krinsky Nitzan,Shklover Jeny,Shainsky-Roitman Janna,Lammers Twan,Schroeder Avi Advanced materials (Deerfield Beach, Fla.) Artificial intelligence (AI) and nanotechnology are two fields that are instrumental in realizing the goal of precision medicine-tailoring the best treatment for each cancer patient. Recent conversion between these two fields is enabling better patient data acquisition and improved design of nanomaterials for precision cancer medicine. Diagnostic nanomaterials are used to assemble a patient-specific disease profile, which is then leveraged, through a set of therapeutic nanotechnologies, to improve the treatment outcome. However, high intratumor and interpatient heterogeneities make the rational design of diagnostic and therapeutic platforms, and analysis of their output, extremely difficult. Integration of AI approaches can bridge this gap, using pattern analysis and classification algorithms for improved diagnostic and therapeutic accuracy. Nanomedicine design also benefits from the application of AI, by optimizing material properties according to predicted interactions with the target drug, biological fluids, immune system, vasculature, and cell membranes, all affecting therapeutic efficacy. Here, fundamental concepts in AI are described and the contributions and promise of nanotechnology coupled with AI to the future of precision cancer medicine are reviewed. 10.1002/adma.201901989
    Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC). Parvathaneni Vineela,Goyal Mimansa,Kulkarni Nishant S,Shukla Snehal K,Gupta Vivek Pharmaceutical research PURPOSE:Nelfinavir (NFV), a FDA approved antiretroviral drug, has been reported to exhibit cancer cells growth inhibition and increased apoptosis. However, it requires a higher dose leading to toxicity, thus limiting its potential clinical translation. We aim to develop biodegradable (poly (lactic-co-glycolic acid)) PLGA nanoparticles of nelfinavir and determine their efficacy to treat non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN:HIV protease inhibitor, NFV, was loaded into PLGA nanoparticles by double emulsion/solvent evaporation method; and nanoparticles were characterized for physicochemical characteristics including morphology and intracellular uptake. Their anti-cancer efficacy in NSCLC was assessed by in vitro assays including cytotoxicity, cellular migration, colony formation; and 3D spheroid culture mimicking in-vivo tumor microenvironment. Studies were also conducted to elucidate effects on molecular pathways including apoptosis, autophagy, and endoplasmic stress. RESULTS:NFV loaded PLGA nanoparticles (NPs) were found to have particle size: 191.1 ± 10.0 nm, zeta potential: -24.3 ± 0.9 mV, % drug loading: 2.5 ± 0.0%; and entrapment efficiency (EE): 30.1 ± 0.5%. NFV NP inhibited proliferation of NSCLC cells compared to NFV and exhibited significant IC reduction. From the caspase-dependent apoptosis assays and western blot studies (upregulation of ATF3), it was revealed that NFV NP significantly induced ER stress marker ATF3, cleaved PARP and further caused autophagy inhibition (LC3BII upregulation) leading to increased cellular death. In addition, NFV NP were found to be more efficacious in penetrating solid tumors in ex-vivo studies compared to plain NFV. CONCLUSIONS:Nelfinavir, a lead HIV protease inhibitor can be repositioned as a NSCLC therapeutic through nanoparticulate delivery. Given its ability to induce apoptosis and efficient tumor penetration capability, NFV loaded PLGA nanoparticulate systems provide a promising delivery system in NSCLC treatment. 10.1007/s11095-020-02848-2
    Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Agrawal Mukta,Saraf Swarnlata,Saraf Shailendra,Antimisiaris Sophia G,Hamano Nobuhito,Li Shyh-Dar,Chougule Mahavir,Shoyele Sunday A,Gupta Umesh,Ajazuddin ,Alexander Amit Expert opinion on drug delivery INTRODUCTION:Brain is supposed to be the most complicated part of the body which is very far from the reach of drug moieties. The drug entry in to the brain region depends upon various factors, and among those, the blood-brain-barrier remains the most prominent one. This barrier restricts the entry of almost all the drug and most of the essential biological components like proteins, peptides, etc. and hinders treatment of the CNS disorders. Alzheimer Disease (AD) is one such brain disorder, more specifically a neurodegenerative disorder which primarily affects the older adults. AREAS COVERED:From solubility enhancement to targeted delivery, the nanoparticulate system became the answer for almost all the criticality related to drug delivery. Hence, nanoparticulate drug carrier system has been widely utilizing to remove the hurdles of brain drug delivery. Keeping this in mind, we have underlined the proficiencies of the nanocarrier systems which claim to improve the drug efficacy for the treatment of the AD. EXPERT OPINION:The nanotechnological approaches are highly exploited by the researchers to enhance the drug permeation across the BBB to improve its bioavailability and efficacy by protecting the drug from peripheral degradation. However, still in this area of drug targeting provides vast scope for discoveries towards the enhancement of drug efficacy through surface modifications, site specification, reduced toxicity of the nanocarrier system and so on. 10.1080/17425247.2018.1471058
    Nanotechnology, from quantum mechanical calculations up to drug delivery. Szefler Beata International journal of nanomedicine There are several reasons why nanotechnology is currently considered as the leader among the most intensively developing research trends. Nanomatter often exhibits new properties, other than those of the morphology of a continuous solid. Also, new phenomena appear at the nanoscale, which are unknown in the case of microcrystalline objects. For this reason, nanomaterials have already found numerous applications that are described in this review. However, among intensively developed various branches of nanotechnology, nanomedicine and pharmacology stand out particularly, which opens new possibilities for the development of these disciplines, gives great hope for the creation of new drugs in which toxicological properties are reduced to a minimum, reduces the doses of medicines, offers targeted treatment and increases diagnostic possibilities. Nanotechnology is the source of a great revolution in medicine. It gives great hope for better and faster treatment of many diseases and gives hope for a better tomorrow. However, the creation of new "nanodrugs" requires a special understanding of the properties of nanoparticles. This article is a review work which determines and describes the way of creating new nanodrugs from ab initio calculations by docking and molecular dynamic applications up to a new medicinal product, as a proposal for the personalized medicine, in the early future. 10.2147/IJN.S172907
    Functionalized Keratin as Nanotechnology-Based Drug Delivery System for the Pharmacological Treatment of Osteosarcoma. Martella Elisa,Ferroni Claudia,Guerrini Andrea,Ballestri Marco,Columbaro Marta,Santi Spartaco,Sotgiu Giovanna,Serra Massimo,Donati Davide Maria,Lucarelli Enrico,Varchi Greta,Duchi Serena International journal of molecular sciences Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma. 10.3390/ijms19113670
    Synergistic Interplay of Medicinal Chemistry and Formulation Strategies in Nanotechnology - From Drug Discovery to Nanocarrier Design and Development. Sunoqrot Suhair,Hamed Rania,Abdel-Halim Heba,Tarawneh Ola Current topics in medicinal chemistry Over the last few decades, nanotechnology has given rise to promising new therapies and diagnostic tools for a wide range of diseases, especially cancer. The unique properties of nanocarriers such as liposomes, polymeric nanoparticles, micelles, and bioconjugates have mainly been exploited to enhance drug solubility, dissolution, and bioavailability. The most important advantage offered by nanotechnology is the ability to specifically target organs, tissues, and individual cells, which ultimately reduces the systemic side effects and improves the therapeutic index of drug molecules. The contribution of medicinal chemistry to nanotechnology is evident in the abundance of new active molecules that are being discovered but are faced with tremendous delivery challenges by conventional formulation strategies. Additionally, medicinal chemistry plays a crucial role in all the steps involved in the preparation of nanocarriers, where structure-activity relationships of the drug molecule as well as the nanocarrier are harnessed to enhance the design, efficacy, and safety of nanoformulations. The aim of this review is to provide an overview of the contributions of medicinal chemistry to nanotechnology, from supplying drug candidates and inspiring high-throughput nanocarrier design strategies, to structure-activity relationship elucidation and construction of computational models for better understanding of nanocarrier physicochemical properties and biological behavior. These two fields are undoubtedly interconnected and we will continue to see the fruits of that communion for years to come. 10.2174/1568026616666161222111656
    Application of nanotechnology for the development of microbicides. Brako Francis,Mahalingam Suntharavathanan,Rami-Abraham Bahijja,Craig Duncan Q M,Edirisinghe Mohan Nanotechnology The vaginal route is increasingly being considered for both local and systemic delivery of drugs, especially those unsuitable for oral administration. One of the opportunities offered by this route but yet to be fully utilised is the administration of microbicides. Microbicides have an unprecedented potential for mitigating the global burden from HIV infection as heterosexual contact accounts for most of the new infections occurring in sub-Saharan Africa, the region with the highest prevalent rates. Decades of efforts and massive investment of resources into developing an ideal microbicide have resulted in disappointing outcomes, as attested by several clinical trials assessing the suitability of those formulated so far. The highly complex and multi-level biochemical interactions that must occur among the virus, host cells and the drug for transmission to be halted means that a less sophisticated approach to formulating a microbicide e.g. conventional gels, etc may have to give way for a different formulation approach. Nanotechnology has been identified to offer prospects for fabricating structures with high capability of disrupting HIV transmission. In this review, predominant challenges seen in microbicide development have been highlighted and possible ways of surmounting them suggested. Furthermore, formulations utilising some of these highly promising nanostructures such as liposomes, nanofibres and nanoparticles have been discussed. A perspective on how a tripartite collaboration among governments and their agencies, the pharmaceutical industry and academic scientists to facilitate the development of an ideal microbicide in a timely manner has also been briefly deliberated. 10.1088/1361-6528/28/5/052001
    Magnetic nanotechnology for diclofenac remediation: molecular basis of drug adsorption and neurobehavioral toxicology as a preliminary study for safe application. Agotegaray Mariela A,Gumilar Fernanda,Ferreira María Luján,Lassalle Verónica L International journal of environmental health research Diclofenac is a commercial non-steroidal anti-inflammatory drug commonly present as a pollutant in naturally occurring water sources and wastewaters. In this work, the adsorption of diclofenac onto chitosan-coated magnetic nanosystems is proposed as a possible tool for remediation. Experimental and theoretical studies have been carried out to reveal the mechanisms associated with diclofenac interactions among all the components of the nanosystem. Mechanisms are presented, analyzed and discussed. A toxicological study in mice was carried out to evaluate the parameters associated with neurotoxicity of the nanodevice. The elucidation of the mechanisms implied in the adsorption process of diclofenac onto magnetic chitosan nanocomposites suggests that diclofenac remediation from water is possible by adsorption onto chitosan. The strategy innovates the commonly used methodologies for diclofenac remediation from pharmaceutical wastes. This magnetic nanotechnology would not induce damage on the nervous system in a murine model, in case of traces remaining in water sources. 10.1080/09603123.2019.1631262
    Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment. Ho Benjamin N,Pfeffer Claire M,Singh Amareshwar T K Anticancer research The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. 10.21873/anticanres.12044
    Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Chaturvedi Vivek K,Singh Anshuman,Singh Vinay K,Singh Mohan P Current drug metabolism BACKGROUND:Nanotechnology is gaining significant attention worldwide for cancer treatment. Nanobiotechnology encourages the combination of diagnostics with therapeutics, which is a vital component of a customized way to deal with the malignancy. Nanoparticles are being used as Nanomedicine which participates in diagnosis and treatment of various diseases including cancer. The unique characteristic of Nanomedicine i.e. their high surface to volume ratio enables them to tie, absorb, and convey small biomolecule like DNA, RNA, drugs, proteins, and other molecules to targeted site and thus enhances the efficacy of therapeutic agents. OBJECTIVE:The objective of the present article is to provide an insight of several aspect of nanotechnology in cancer therapeutics such as various nanomaterials as drug vehicle, drug release strategies and role of nanotechnology in cancer therapy. METHODS:We performed an extensive search on bibliographic database for research article on nanotechnology and cancer therapeutics and further compiled the necessary information from various articles into the present article. RESULTS:Cancer nanotechnology confers a unique technology against cancer through early diagnosis, prevention, personalized therapy by utilizing nanoparticles and quantum dots.Nano-biotechnology plays an important role in the discovery of cancer biomarkers. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires etc. have been developed as a carrier of biomolecules that can detect cancer biomarkers. Nanoparticle assisted cancer detection and monitoring involves biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers. CONCLUSION:This review highlights various approaches of cancer nanotechnology in the advancement of cancer therapy. 10.2174/1389200219666180918111528
    Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. Weiss Carsten,Carriere Marie,Fusco Laura,Capua Ilaria,Regla-Nava Jose Angel,Pasquali Matteo,Scott James A,Vitale Flavia,Unal Mehmet Altay,Mattevi Cecilia,Bedognetti Davide,Merkoçi Arben,Tasciotti Ennio,Yilmazer Açelya,Gogotsi Yury,Stellacci Francesco,Delogu Lucia Gemma ACS nano The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics. 10.1021/acsnano.0c03697
    Recent Advancement in Nanotechnology-Based Drug Delivery System Against Viral Infections. Pradhan Deepak,Biswasroy Prativa,Goyal Amit,Ghosh Goutam,Rath Goutam AAPS PharmSciTech In the last few decades, the exponential rise in the incidence of viral infections sets a global health emergency across the world. The biomimetic architecture, the ability to hijack host immune responses, continuous antigen shifting, and drafting are the major critical factors that are responsible for the unavailability of a concrete therapeutic regimen against viral infections. Further, inappropriate pharmacodynamic physicochemical and biological parameters such as low aqueous solubility, poor permeability, high affinity for plasm proteins, short biological half-lives, and fast elimination from the systemic circulation are the major critical factors that govern the suboptimal drug concentration at the target site that leads to the development of drug resistance. To address this issue, nanotechnology-based drug delivery approach is emerged as an altering method to attain the optimal drug concentration at the target site for a prolonged period by integrating the nanoengineering tools in the synthesis of nanoparticles. Nanodimensional configuration with enhanced permeability and retention effect, increased surface-area-to-volume ratio, provision for surface functionalization, etc., are the privileged aspects that make it an effective drug delivery system for dispensing the antiviral therapeutics. However, size, shape, charge, and surface topology of nanoparticles are the greater influential factors that determine target-specific drug delivery, optimum cellular uptake, degree of opsonization by the host immune cells, drug retention time, transcytosis, the extension of biological half-life, in vivo stability, and cytotoxicity. The review will enlighten the elaborative role of nanotechnology-based drug delivery and the major challenging aspect of clinical safety and efficacy. 10.1208/s12249-020-01908-5
    Cancer Nanotechnology-An Excursion on Drug Delivery Systems. Sharma Mala,Pandey Chitranshu,Sharma Neha,Kamal Mohammad A,Sayeed Usman,Akhtar Salman Anti-cancer agents in medicinal chemistry BACKGROUND:Nanotechnology pictures a breakthrough in the domain of cancer therapy owing to its novel properties and functions. This technology is quite amendable as it allows the scientists to engineer drug nanoparticles of dimensions 10nm - 500nm permitting them to pass via leaky vasculature of tumorigenic microenvironment with higher specificity, reduced cytotoxicity and effective release without any after effects. The central part of the review zooms onto the role of nanoparticles and their targeted delivery for the cure of cancer. METHODS:The novel and various versatile nanoparticle platforms viz. polymeric (drug-conjugates, micelles, dendrimers), Lipid-based (liposomes, solid nanoparticle, nanostructured lipid carrier, lipid-polymer hybrid), and stimuli-sensitive (thermoresponsive, ultrasound, pH-responsive, hydrogel) etc. have been designed for a persistent, précised nanodrug delivery and the co-delivery of collegial drug conjugates leading to the formation of safer release of myriad of drugs for cancer chemoprevention. RESULTS:The review concerns about tracing and detailing the drug delivery systems of cancer nanotechnology. CONCLUSION:Nanotechnology is bestowed with the design, depiction, fabrication, and application of nanostructures, and devices with their controlled delivery together with the imaging of the selected target site and drug release at the specific site of action. 10.2174/1871520618666180720164015
    Applications of nanotechnology in drug delivery to the central nervous system. Saeedi Majid,Eslamifar Masoumeh,Khezri Khadijeh,Dizaj Solmaz Maleki Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie In recent years, the researchers and drug designers have given growing attention to new nanotechnology strategies to improve drug delivery to the central nervous system (CNS). Nanotechnology has a great potential to affect the treatment of neurological disorders, mainly Alzheimer's disease, Parkinson's disease, brain tumors, and stroke. With regard to neurodegeneration, several studies showed that nanomaterials have been successfully used for the treatments of CNS disorders. In this regard, nanocarriers have facilitated the targeted delivery of chemotherapeutics resulting in the efficient inhibition of disease progression in malignant brain tumors. Therefore, the most efficacious application of nanomaterials is the use of these substances in the treatment of CNS disease that enhances the overall effect of drug and highlights the importance of nano-therapeutics. This study was conducted to review the evidence on the applications of nanotechnology in designing drug delivery systems with the ability to cross through the blood-brain barrier (BBB) in order to transfer the therapeutic agents to the CNS. 10.1016/j.biopha.2018.12.133
    Antibody-based nanotechnology. Hillman Yaron,Lustiger Dan,Wine Yariv Nanotechnology Antibodies are considered the hallmark of the adaptive immune system in that they mediate various key biological functions, such as direct neutralization and recruitment of effector immune cells to eliminate invading pathogens. Antibodies exhibit several unique properties, including high diversity (enabling binding to a wide range of targets), high specificity and structural integrity. These properties and the understanding that antibodies can be utilized in a wide range of applications have motivated the scientific community to develop new approaches for antibody repertoire analysis and rapid monoclonal antibody discovery. Today, antibodies are key modules in the pharmaceutical and diagnostic industries. By virtue of their high affinity and specificity to their targets and the availability of technologies to engineer different antibodies to a wide range of targets, antibodies have become the most promising natural biological molecules in a range of biotechnological applications, such as: highly specific and sensitive nanobiosensors for the diagnostics of different biomarkers; nanoparticle-based targeted drug delivery systems to certain cells or tissues; and nanomachines, which are nanoscale mechanical devices that enable energy conversion into precise mechanical motions in response to specific molecular inputs. In this review, we start by describing the unique properties of antibodies, how antibody diversity is generated, and the available technologies for antibody repertoire analysis and antibody discovery. Thereafter, we provide an overview of some antibody-based nanotechnologies and discuss novel and promising approaches for the application of antibodies in the nanotechnology field. Overall, we aim to bridge the knowledge gap between the nanotechnology and antibody engineering disciplines by demonstrating how technological advances in the antibody field can be leveraged to develop and/or enhance new technological approaches in the nanotechnology field. 10.1088/1361-6528/ab12f4
    Applications of Micro/Nanotechnology in Ultrasound-based Drug Delivery and Therapy for Tumor. Sun Suhui,Wang Ping,Sun Sujuan,Liang Xiaolong Current medicinal chemistry Ultrasound has been broadly used in biomedicine for both tumor diagnosis as well as therapy. The applications of recent developments in micro/nanotechnology promote the development of ultrasound-based biomedicine, especially in the field of ultrasound-based drug delivery and tumor therapy. Ultrasound can activate nano-sized drug delivery systems by different mechanisms for ultrasound- triggered on-demand drug release targeted only at the tumor sites. Ultrasound Targeted Microbubble Destruction (UTMD) technology can not only increase the permeability of vasculature and cell membrane via sonoporation effect but also achieve in situ conversion of microbubbles into nanoparticles to promote cellular uptake and therapeutic efficacy. Furthermore, High Intensity Focused Ultrasound (HIFU), or Sonodynamic Therapy (SDT), is considered to be one of the most promising and representative non-invasive treatment for cancer. However, their application in the treatment process is still limited due to their critical treatment efficiency issues. Fortunately, recently developed micro/nanotechnology offer an opportunity to solve these problems, thus improving the therapeutic effect of cancer. This review summarizes and discusses the recent developments in the design of micro- and nano- materials for ultrasound-based biomedicine applications. 10.2174/0929867327666200212100257