Epigenetic Regulation of the PTEN-AKT-RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma. Bhat Akshay V,Palanichamy Kala Monica,Rao Vinay Kumar,Pignata Luca,Lim Huey Jin,Suriyamurthy Sudha,Chang Kenneth T,Lee Victor K,Guccione Ernesto,Taneja Reshma Cancer research Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. As transient and stable modifications to chromatin have emerged as critical mechanisms in oncogenic signaling, efforts to target epigenetic modifiers as a therapeutic strategy have accelerated in recent years. To identify chromatin modifiers that sustain tumor growth, we performed an epigenetic screen and found that inhibition of lysine methyltransferase G9a significantly affected the viability of ARMS cell lines. Targeting expression or activity of G9a reduced cellular proliferation and motility and tumor growth . Transcriptome and chromatin immunoprecipitation-sequencing analysis provided mechanistic evidence that the tumor-suppressor PTEN was a direct target gene of G9a. G9a repressed PTEN expression in a methyltransferase activity-dependent manner, resulting in increased AKT and RAC1 activity. Re-expression of constitutively active RAC1 in G9a-deficient tumor cells restored oncogenic phenotypes, demonstrating its critical functions downstream of G9a. Collectively, our study provides evidence for a G9a-dependent epigenetic program that regulates tumor growth and suggests targeting G9a as a therapeutic strategy in ARMS. SIGNIFICANCE: These findings demonstrate that RAC1 is an effector of G9a oncogenic functions and highlight the potential of G9a inhibitors in the treatment of ARMS. 10.1158/0008-5472.CAN-18-2676
    CDK4 Amplification Reduces Sensitivity to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma. Olanich Mary E,Sun Wenyue,Hewitt Stephen M,Abdullaev Zied,Pack Svetlana D,Barr Frederic G Clinical cancer research : an official journal of the American Association for Cancer Research PURPOSE:Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and includes a PAX3- or PAX7-FOXO1 fusion-positive subtype. Amplification of chromosomal region 12q13-q14, which contains the CDK4 proto-oncogene, was identified in an aggressive subset of fusion-positive RMS. CDK4/6 inhibitors have antiproliferative activity in CDK4-amplified liposarcoma and neuroblastoma, suggesting CDK4/6 inhibition as a potential therapeutic strategy in fusion-positive RMS. EXPERIMENTAL DESIGN:We examined the biologic consequences of CDK4 knockdown, CDK4 overexpression, and pharmacologic CDK4/6 inhibition by LEE011 in fusion-positive RMS cell lines and xenografts. RESULTS:Knockdown of CDK4 abrogated proliferation and transformation of 12q13-14-amplified and nonamplified fusion-positive RMS cells via G1-phase cell-cycle arrest. This arrest was mediated by reduced RB phosphorylation and E2F-responsive gene expression. Significant differences in E2F target expression, cell-cycle distribution, proliferation, or transformation were not observed in RMS cells overexpressing CDK4. Treatment with LEE011 phenocopied CDK4 knockdown, decreasing viability, RB phosphorylation, and E2F-responsive gene expression and inducing G1-phase cell-cycle arrest. Although all fusion-positive cell lines showed sensitivity to CDK4/6 inhibition, there was diminished sensitivity associated with CDK4 amplification and overexpression. This variable responsiveness to LEE011 was recapitulated in xenograft models of CDK4-amplified and nonamplified fusion-positive RMS. CONCLUSIONS:Our data demonstrate that CDK4 is necessary but overexpression is not sufficient for RB-E2F-mediated G1-phase cell-cycle progression, proliferation, and transformation in fusion-positive RMS. Our studies indicate that LEE011 is active in the setting of fusion-positive RMS and suggest that low CDK4-expressing fusion-positive tumors may be particularly susceptible to CDK4/6 inhibition. 10.1158/1078-0432.CCR-14-2955
    Targeted killing of rhabdomyosarcoma cells by a MAP-based human cytolytic fusion protein. Brehm Hannes,Hristodorov Dmitrij,Pardo Alessa,Mladenov Radoslav,Niesen Judith,Fischer Rainer,Tur Mehmet K,Barth Stefan Cancer letters The treatment of rhabdomyosarcoma (RMS) is challenging, and the prognosis remains especially poor for high-grade RMS with metastasis. The conventional treatment of RMS is based on multi-agent chemotherapy combined with resection and radiotherapy, which are often marked by low success rate. Alternative therapeutic options include the combination of standard treatments with immunotherapy. We generated a microtubule-associated protein (MAP)-based fully human cytolytic fusion protein (hCFP) targeting the fetal acetylcholine receptor, which is expressed on RMS cells. We were able to express and purify functional scFv35-MAP from Escherichia coli cells. Moreover, we found that scFv35-MAP is rapidly internalized by target cells after binding its receptor, and exhibits specific cytotoxicity toward FL-OH1 and RD cells in vitro. We also confirmed that scFv35-MAP induces apoptosis in FL-OH1 and RD cells. The in vivo potential of scFv35-MAP will need to be considered in further studies. 10.1016/j.canlet.2015.04.004
    Aurora A Kinase Inhibition Destabilizes PAX3-FOXO1 and MYCN and Synergizes with Navitoclax to Induce Rhabdomyosarcoma Cell Death. Ommer Johannes,Selfe Joanna L,Wachtel Marco,O'Brien Eleanor M,Laubscher Dominik,Roemmele Michaela,Kasper Stephanie,Delattre Olivier,Surdez Didier,Petts Gemma,Kelsey Anna,Shipley Janet,Schäfer Beat W Cancer research The clinically aggressive alveolar rhabdomyosarcoma (RMS) subtype is characterized by expression of the oncogenic fusion protein PAX3-FOXO1, which is critical for tumorigenesis and cell survival. Here, we studied the mechanism of cell death induced by loss of PAX3-FOXO1 expression and identified a novel pharmacologic combination therapy that interferes with PAX3-FOXO1 biology at different levels. Depletion of PAX3-FOXO1 in fusion-positive (FP)-RMS cells induced intrinsic apoptosis in a NOXA-dependent manner. This was pharmacologically mimicked by the BH3 mimetic navitoclax, identified as top compound in a screen from 208 targeted compounds. In a parallel approach, and to identify drugs that alter the stability of PAX3-FOXO1 protein, the same drug library was screened and fusion protein levels were directly measured as a read-out. This revealed that inhibition of Aurora kinase A most efficiently negatively affected PAX3-FOXO1 protein levels. Interestingly, this occurred through a novel specific phosphorylation event in and binding to the fusion protein. Aurora kinase A inhibition also destabilized MYCN, which is both a functionally important oncogene and transcriptional target of PAX3-FOXO1. Combined treatment with an Aurora kinase A inhibitor and navitoclax in FP-RMS cell lines and patient-derived xenografts synergistically induced cell death and significantly slowed tumor growth. These studies identify a novel functional interaction of Aurora kinase A with both PAX3-FOXO1 and its effector MYCN, and reveal new opportunities for targeted combination treatment of FP-RMS. SIGNIFICANCE: These findings show that Aurora kinase A and Bcl-2 family proteins are potential targets for FP-RMS. 10.1158/0008-5472.CAN-19-1479
    SPRY2 is a novel MET interactor that regulates metastatic potential and differentiation in rhabdomyosarcoma. Saini Masum,Verma Aakanksha,Mathew Sam J Cell death & disease Rhabdomyosarcoma (RMS) is a predominantly pediatric soft-tissue cancer where the tumor cells exhibit characteristics of the developing skeletal muscle, and the two most common sub-types are embryonal and alveolar RMS. Elevated activation of the receptor tyrosine kinase (RTK) MET is frequent in RMS and is thought to cause increased tumor metastasis and lack of differentiation. However, the reasons underlying dysregulated MET expression and activation in RMS are not well understood. Therefore, we explored the role of Sprouty 2 (SPRY2), a modulator of RTK signaling, in regulating MET. We identify SPRY2 as a novel MET interactor that colocalizes with and binds MET in both embryonal and alveolar RMS. We find that depletion of SPRY2 leads to MET degradation, resulting in reduced migratory and clonogenic potential, and induction of differentiation in both embryonal and alveolar RMS, outcomes that are identical to depletion of MET. Activation of the ERK/MAPK pathway, known to be crucial for regulating cell migration and whose inhibition is required for myogenic differentiation, was downregulated upon depletion of MET or SPRY2. This provides a direct connection to the decreased migration and induction of differentiation upon depletion of MET or SPRY2. Thus, these data indicate that SPRY2 interacts with MET and stabilizes it in order to maintain signaling downstream of MET, which keeps the ERK/MAPK pathway active, resulting in metastatic potential and inhibition of differentiation in RMS. Our results identify a novel mechanism by which MET signaling is stabilized in RMS, and is a potential target for therapeutic intervention in RMS. 10.1038/s41419-018-0261-2
    Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Renshaw Jane,Taylor Kathryn R,Bishop Ryan,Valenti Melanie,De Haven Brandon Alexis,Gowan Sharon,Eccles Suzanne A,Ruddle Ruth R,Johnson Louise D,Raynaud Florence I,Selfe Joanna L,Thway Khin,Pietsch Torsten,Pearson Andrew D,Shipley Janet Clinical cancer research : an official journal of the American Association for Cancer Research PURPOSE:To provide rationale for using phosphoinositide 3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) pathway inhibitors to treat rhabdomyosarcomas, a major cause of pediatric and adolescent cancer deaths. EXPERIMENTAL DESIGN:The prevalence of PI3K/MAPK pathway activation in rhabdomyosarcoma clinical samples was assessed using immunohistochemistry. Compensatory signaling and cross-talk between PI3K/MAPK pathways was determined in rhabdomyosarcoma cell lines following p110α short hairpin RNA-mediated depletion. Pharmacologic inhibition of reprogrammed signaling in stable p110α knockdown lines was used to determine the target-inhibition profile inducing maximal growth inhibition. The in vitro and in vivo efficacy of inhibitors of TORC1/2 (AZD8055), MEK (AZD6244), and P13K/mTOR (NVP-BEZ235) was evaluated alone and in pairwise combinations. RESULTS:PI3K pathway activation was seen in 82.5% rhabdomyosarcomas with coactivated MAPK in 36% and 46% of alveolar and embryonal subtypes, respectively. p110α knockdown in cell lines over the short and long term was associated with compensatory expression of other p110 isoforms, activation of the MAPK pathway, and cross-talk to reactivate the PI3K pathway. Combinations of PI3K pathway and MAP-ERK kinase (MEK) inhibitors synergistically inhibited cell growth in vitro. Treatment of RD cells with AZD8055 plus AZD6244 blocked reciprocal pathway activation, as evidenced by reduced AKT/ERK/S6 phosphorylation. In vivo, the synergistic effect on growth and changes in pharmacodynamic biomarkers was recapitulated using the AZD8055/AZD6244 combination but not NVP-BEZ235/AZD6244. Pharmacokinetic analysis provided evidence of drug-drug interaction with both combinations. CONCLUSIONS:Dual PI3K/MAPK pathway activation and compensatory signaling in both rhabdomyosarcoma subtypes predict a lack of clinical efficacy for single agents targeting either pathway, supporting a therapeutic strategy combining a TORC1/2 with a MEK inhibitor. 10.1158/1078-0432.CCR-13-0850
    Downregulation of IGFBP2 is associated with resistance to IGF1R therapy in rhabdomyosarcoma. Kang Z,Yu Y,Zhu Y J,Davis S,Walker R,Meltzer P S,Helman L J,Cao L Oncogene Agents targeting the insulin-like growth factor-1 receptor (IGF1R) are in clinical development, but, despite some initial success of single agents in sarcoma, response rates are low with brief durations. Thus, it is important to identify markers predictive of response, to understand mechanisms of resistance, and to explore combination therapies. In this study, we found that, although associated with PAX3-FKHR translocation, increased IGF1R level is an independent prognostic marker for worse overall survival, particularly in patients with PAX3-FKHR-positive rhabdomyosarcoma (RMS). IGF1R antibody-resistant RMS cells were generated using an in vivo model. Expression analysis indicated that IGFBP2 is both the most affected gene in the insulin-like growth factor (IGF) signaling pathway and the most significantly downregulated gene in the resistant lines, indicating that there is a strong selection to repress IGFBP2 expression in tumor cells resistant to IGF1R antibody. IGFBP2 is inhibitory to IGF1R phosphorylation and its signaling. Similar to antibodies to IGF1/2 or IGF2, the addition of exogenous IGFBP2 potentiates the activity of IGF1R antibody against the RMS cells, and it reverses the resistance to IGF1R antibody. In contrast to IGF1R, lower expression of IGFBP2 is associated with poorer overall survival, consistent with its inhibitory activity found in this study. Finally, blocking downstream Protein kinase B (AKT) activation with Phosphatidylinositide 3-kinases (PI3K)- or mammalian target of rapamycin (mTOR)-specific inhibitors significantly sensitized the resistant cells to the IGF1R antibody. These findings show that constitutive IGFBP2 downregulation may represent a novel mechanism for acquired resistance to IGF1R therapeutic antibody in vivo and suggest various drug combinations to enhance antibody activity and to overcome resistance. 10.1038/onc.2013.509
    Chimeric antigen receptor-modified T-cell therapy for platelet-derived growth factor receptor α-positive rhabdomyosarcoma. Xiao Wei,Wang Jinghua,Wen Xizhi,Xu Bushu,Que Yi,Yu Kuai,Xu Liping,Zhao Jingjing,Pan Qiuzhong,Zhou Penghui,Zhang Xing Cancer BACKGROUND:New immunotherapeutic approaches are urgently needed for metastatic rhabdomyosarcoma, which is associated with poor survival and unsatisfactory treatment outcomes. Platelet-derived growth factor receptor α (PDGFRA) plays an essential role in the onset and development of rhabdomyosarcoma and is a new potential therapeutic target for rhabdomyosarcoma. The objective of this study was to generate humanized PDGFRA single-chain variable fragment-based chimeric antigen receptor (CAR)-modified T cells (CAR-T cells) against PDGFRA-positive rhabdomyosarcoma. METHODS:PDGFRA antigen expression was evaluated in specimens from patients with rhabdomyosarcoma. CAR-T cells containing a PDGFRA-specific single-chain variable fragment was developed in combination with a 4-1BB costimulatory domain and a CD3-ζ signaling domain. Specific cytotoxic effects of PDGFRA CAR-T cells, T-cell proliferation, and cytokine secretion were investigated in vitro and in vivo. RESULTS:PDGFRA CAR-T cells produced large amounts of immune-promoting cytokines, including interleukin 2, tumor necrosis factor α, and interferon γ, and exhibited efficient cytotoxic activity toward human PDGFRA-overexpressing rhabdomyosarcoma cells in vitro. In a subcutaneous xenograft model, CAR-T cells were more effective against PDGFRA-overexpressing rhabdomyosarcoma than against rhabdomyosarcoma with low PDGFRA expression in terms of tumor regression and patient survival. Expanded CAR-T cells also were detected in peripheral blood. CONCLUSIONS:The current study demonstrates for the first time that the PDGFRA antigen is a promising target for CAR-T-cell therapy in rhabdomyosarcoma and likely in a wide spectrum of other PDGFRA-expressing cancers. 10.1002/cncr.32764
    Concomitant epigenetic targeting of LSD1 and HDAC synergistically induces mitochondrial apoptosis in rhabdomyosarcoma cells. Haydn Tinka,Metzger Eric,Schuele Roland,Fulda Simone Cell death & disease The lysine-specific demethylase 1 (LSD1) is overexpressed in several cancers including rhabdomyosarcoma (RMS). However, little is yet known about whether or not LSD1 may serve as therapeutic target in RMS. We therefore investigated the potential of LSD1 inhibitors alone or in combination with other epigenetic modifiers such as histone deacetylase (HDAC) inhibitors. Here, we identify a synergistic interaction of LSD1 inhibitors (i.e., GSK690, Ex917) and HDAC inhibitors (i.e., JNJ-26481585, SAHA) to induce cell death in RMS cells. By comparison, LSD1 inhibitors as single agents exhibit little cytotoxicity against RMS cells. Mechanistically, GSK690 acts in concert with JNJ-26481585 to upregulate mRNA levels of the proapoptotic BH3-only proteins BMF, PUMA, BIM and NOXA. This increase in mRNA levels is accompanied by a corresponding upregulation of BMF, PUMA, BIM and NOXA protein levels. Importantly, individual knockdown of either BMF, BIM or NOXA significantly reduces GSK690/JNJ-26481585-mediated cell death. Similarly, genetic silencing of BAK significantly rescues cell death upon GSK690/JNJ-26481585 cotreatment. Also, overexpression of antiapoptotic BCL-2 or MCL-1 significantly protects RMS cells from GSK690/JNJ-26481585-induced cell death. Furthermore, GSK690 acts in concert with JNJ-26481585 to increase activation of caspase-9 and -3. Consistently, addition of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) significantly reduces GSK690/JNJ-26481585-mediated cell death. In conclusion, concomitant LSD1 and HDAC inhibition synergistically induces cell death in RMS cells by shifting the ratio of pro- and antiapoptotic BCL-2 proteins in favor of apoptosis, thereby engaging the intrinsic apoptotic pathway. This indicates that combined treatment with LSD1 and HDAC inhibitors is a promising new therapeutic approach in RMS. 10.1038/cddis.2017.239
    JARID2 is a direct target of the PAX3-FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells. Walters Z S,Villarejo-Balcells B,Olmos D,Buist T W S,Missiaglia E,Allen R,Al-Lazikani B,Garrett M D,Blagg J,Shipley J Oncogene Rhabdomyosarcomas (RMS) are the most frequent soft-tissue sarcoma in children and characteristically show features of developing skeletal muscle. The alveolar subtype is frequently associated with a PAX3-FOXO1 fusion protein that is known to contribute to the undifferentiated myogenic phenotype of RMS cells. Histone methylation of lysine residues controls developmental processes in both normal and malignant cell contexts. Here we show that JARID2, which encodes a protein known to recruit various complexes with histone-methylating activity to their target genes, is significantly overexpressed in RMS with PAX3-FOXO1 compared with the fusion gene-negative RMS (t-test; P < 0.0001). Multivariate analyses showed that higher JARID2 levels are also associated with metastases at diagnosis, independent of fusion gene status and RMS subtype (n = 120; P = 0.039). JARID2 levels were altered by silencing or overexpressing PAX3-FOXO1 in RMS cell lines with and without the fusion gene, respectively. Consistent with this, we demonstrated that JARID2 is a direct transcriptional target of the PAX3-FOXO1 fusion protein. Silencing JARID2 resulted in reduced cell proliferation coupled with myogenic differentiation, including increased expression of Myogenin (MYOG) and Myosin Light Chain (MYL1) in RMS cell lines representative of both the alveolar and embryonal subtypes. Induced myogenic differentiation was associated with a decrease in JARID2 levels and this phenotype could be rescued by overexpressing JARID2. Furthermore, we that showed JARID2 binds to and alters the methylation status of histone H3 lysine 27 in the promoter regions of MYOG and MYL1 and that the interaction of JARID2 at these promoters is dependent on EED, a core component of the polycomb repressive complex 2 (PRC2). Therefore, JARID2 is a downstream effector of PAX3-FOXO1 that maintains an undifferentiated myogenic phenotype that is characteristic of RMS. JARID2 and other components of PRC2 may represent novel therapeutic targets for treating RMS patients. 10.1038/onc.2013.46
    FANCD2 is a potential therapeutic target and biomarker in alveolar rhabdomyosarcoma harboring the PAX3-FOXO1 fusion gene. Singh Mamata,Leasure Justin M,Chronowski Christopher,Geier Brian,Bondra Kathryn,Duan Wenrui,Hensley Lauren A,Villalona-Calero Miguel,Li Ning,Vergis Anthony M,Kurmasheva Raushan T,Shen Changxian,Woods Gary,Sebastian Nikhil,Fabian Denise,Kaplon Rita,Hammond Sue,Palanichamy Kamalakannan,Chakravarti Arnab,Houghton Peter J Clinical cancer research : an official journal of the American Association for Cancer Research PURPOSE:Alveolar rhabdomyosarcoma that harbors the PAX3-FOXO1 fusion gene (t-ARMS) is a common and lethal subtype of this childhood malignancy. Improvement in clinical outcomes in this disease is predicated upon the identification of novel therapeutic targets. EXPERIMENTAL DESIGN:Robust mouse models were used for in vivo analysis, and molecular studies were performed on xenografts treated in parallel. Two independent patient sets (n = 101 and 124) of clinically annotated tumor specimens were used for analysis of FANCD2 levels and its association with clinical and molecular characteristics and outcomes. RESULTS:Our xenograft studies reveal a selective suppression of FANCD2 by m-TOR kinase inhibition and radiosensitization of the t-ARMS line only. In the initial patient set, we show that FANCD2 transcript levels are prognostic in univariate analysis, and are significantly associated with metastatic disease and that the copresence of the translocation and high expression of FANCD2 is independently prognostic. We also demonstrate a significant and nonrandom enrichment of mTOR-associated genes that correlate with FANCD2 gene expression within the t-ARMS samples, but not within other cases. In the second patient set, we show that on a protein level, FANCD2 expression correlates with PAX3-FOXO1 fusion gene and is strongly associated with phospho-P70S6K expression in cases with the fusion gene. CONCLUSIONS:Our data demonstrate that FANCD2 may have a significant role in the radiation resistance and virulence of t-ARMS. Indirectly targeting this DNA repair protein, through mTOR inhibition, may represent a novel and selective treatment strategy. 10.1158/1078-0432.CCR-13-0556
    Dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 synergizes with chloroquine to induce apoptosis in embryonal rhabdomyosarcoma. Hugle Manuela,Fulda Simone Cancer letters Aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway has been reported for rhabdomyosarcoma (RMS) and is implicated in survival of tumor cells as well as therapeutic resistance. In the present study, we searched for combination therapies with the dual PI3K/mTOR inhibitor NVP-BEZ235 (BEZ235) in RMS. Here, we identify a synthetic lethal interaction of BEZ235 together with the lysosomotropic agent chloroquine (CQ), which is effective against embryonal rhabdomyosarcoma (ERMS). BEZ235 and CQ at subtoxic concentrations synergize to induce apoptosis in ERMS cells, as confirmed by calculation of combination index (CI). BEZ235 and CQ cooperate to activate caspase-9, -3 and -8, which is crucial for apoptosis induction given that the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) blocks BEZ235/CQ-induced apoptosis. Additionally, pharmacological inhibition of lysosomal enzymes significantly reduces BEZ235/CQ-induced apoptosis, indicating concomitant activation of the lysosomal compartment. Importantly, BEZ235/CQ-induced apoptosis is significantly inhibited by antioxidants, implying that increased oxidative stress contributes to BEZ235/CQ-induced cell death. Importantly, our molecular studies reveal that BEZ235/CQ-induced apoptosis is mediated by cooperative downregulation of the antiapoptotic BCL-2 family protein MCL-1, since stabilization of MCL-1 by expression of a non-degradable MCL-1 phospho-defective mutant significantly decreases BEZ235/CQ-induced apoptosis. Also, overexpression of antiapoptotic BCL-2 leads to a significant reduction of BEZ235/CQ-induced apoptosis, emphasizing that an intact mitochondrial pathway of apoptosis is required for BEZ235/CQ-induced cell death. This identification of a synthetic lethality of BEZ235 and CQ has important implications for the development of molecular targeted therapies for RMS. 10.1016/j.canlet.2014.12.016
    The mannose 6-phosphate receptor targeted with porphyrin-based periodic mesoporous organosilica nanoparticles for rhabdomyosarcoma theranostics. Daurat Morgane,Nguyen Christophe,Dominguez Gil Sofia,Sol Vincent,Chaleix Vincent,Charnay Clarence,Raehm Laurence,El Cheikh Khaled,Morère Alain,Bernasconi Michele,Timpanaro Andrea,Garcia Marcel,Cunin Frédérique,Roessler Jochen,Durand Jean-Olivier,Gary-Bobo Magali Biomaterials science Porphyrin-based periodic mesoporous organosilica nanoparticles (PMO) synthesized from a large functional octatriethoxysilylated porphyrin precursor and allowing two-photon excitation photodynamic therapy (TPE-PDT) and NIR imaging were synthesized. These PMO were grafted with polyethylene glycol (PEG) moieties and an analogue of mannose 6-phosphate functionalized at the anomeric position (AMFA). AMFAs are known to efficiently target mannose 6-phosphate receptors (M6PRs) which are over-expressed in various cancers. Here, we demonstrated for the first time that M6PRs were over-expressed in rhabdomyosarcoma (RMS) cells and could be efficiently targeted with PMO-AMFA allowing TPE imaging and TPE-PDT of RMS cells. The comparison with healthy myoblasts demonstrated an absence of biological effects, suggesting a cancer cell specificity in the biomedical action observed. 10.1039/d0bm00586j
    Arsenic trioxide induces Noxa-dependent apoptosis in rhabdomyosarcoma cells and synergizes with antimicrotubule drugs. Meister Michael Torsten,Boedicker Cathinka,Graab Ulrike,Hugle Manuela,Hahn Heidi,Klingebiel Thomas,Fulda Simone Cancer letters The prognosis of metastatic or relapsed rhabdomyosarcoma (RMS) is poor, highlighting the need of new treatment options. In the present study, we evaluated the in vitro efficacy of arsenic trioxide (ATO) in RMS, a FDA-approved drug used in pediatric leukemia. Here, we report that ATO exerts antitumor activity against RMS cells both as single agent and in combination with microtubule-targeting drugs. Monotherapy with ATO reduces cell viability, triggers apoptosis and suppresses clonogenic survival of RMS cells, at least in part, by transcriptional induction of the proapoptotic BH3-only protein Noxa. siRNA-mediated knockdown of Noxa significantly rescues ATO-mediated cell death, demonstrating that Noxa is required for cell death. Also, ATO suppresses endogenous Hedgehog (Hh) signaling, as it significantly reduces Gli1 transcriptional activity and expression levels of several Hh target genes. Furthermore, we identify synergistic induction of apoptosis by ATO together with several antimicrotubule agents including vincristine (VCR), vinblastine and eribulin. The addition of the broad-range caspase inhibitor zVAD.fmk or overexpression of the antiapoptotic protein Bcl-2 significantly reduce ATO/VCR-induced cell death, indicating that the ATO/VCR combination triggers caspase-dependent apoptosis via the mitochondrial pathway. In summary, ATO exerts antitumor activity against RMS, especially in combination with antimicrotubule drugs. These findings have important implications for the development of novel therapeutic strategies for RMS. 10.1016/j.canlet.2016.07.007
    RITA downregulates Hedgehog-GLI in medulloblastoma and rhabdomyosarcoma via JNK-dependent but p53-independent mechanism. Azatyan Ani,Gallo-Oller Gabriel,Diao Yumei,Selivanova Galina,Johnsen John Inge,Zaphiropoulos Peter G Cancer letters Overactivation of the Hedgehog (HH) signaling pathway is implicated in many cancers. In this study, we demonstrate that the small molecule RITA, a p53 activator, effectively downregulates HH signaling in human medulloblastoma and rhabdomyosarcoma cells irrespective of p53. This is mediated by a ROS-independent activation of the MAP kinase JNK. We also show that in vitro RITA sensitized cells to the GLI antagonist GANT61, as co-administration of the two drugs had more pronounced effects on cell proliferation and apoptosis. In vivo administration of RITA or GANT61 suppressed rhabdomyosarcoma xenograft growth in nude mice; however, co-administration did not further enhance tumor suppression, even though cell proliferation was decreased. RITA was more potent than GANT61 in downregulating HH target gene expression; surprisingly, this suppressive effect was almost completely eliminated when the two drugs were administered together. Notably, RNA-seq demonstrated a broader response of pathways involved in cancer cell growth in the combination treatment, providing a plausible interpretation for tumor reduction in the absence of HH signaling downregulation. 10.1016/j.canlet.2018.11.005
    Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Kikuchi K,Soundararajan A,Zarzabal L A,Weems C R,Nelon L D,Hampton S T,Michalek J E,Rubin B P,Fields A P,Keller C Oncogene Alveolar rhabdomyosarcoma is an aggressive pediatric cancer exhibiting skeletal-muscle differentiation. New therapeutic targets are required to improve the dismal prognosis for invasive or metastatic alveolar rhabdomyosarcoma. Protein kinase C iota (PKCι) has been shown to have an important role in tumorigenesis of many cancers, but little is known about its role in rhabdomyosarcoma. Our gene-expression studies in human tumor samples revealed overexpression of PRKCI. We confirmed overexpression of PKCι at the mRNA and protein levels using our conditional mouse model that authentically recapitulates the progression of rhabdomyosarcoma in humans. Inhibition of Prkci by RNA interference resulted in a dramatic decrease in anchorage-independent colony formation. Interestingly, treatment of primary cell cultures using aurothiomalate (ATM), which is a gold-containing classical anti-rheumatic agent and a PKCι-specific inhibitor, resulted in decreased interaction between PKCι and Par6, decreased Rac1 activity and reduced cell viability at clinically relevant concentrations. Moreover, co-treatment with ATM and vincristine (VCR), a microtubule inhibitor currently used in rhabdomyosarcoma treatment regimens, resulted in a combination index of 0.470-0.793 through cooperative accumulation of non-proliferative multinuclear cells in the G2/M phase, indicating that these two drugs synergize. For in vivo tumor growth inhibition studies, ATM demonstrated a trend toward enhanced VCR sensitivity. Overall, these results suggest that PKCι is functionally important in alveolar rhabdomyosarcoma anchorage-independent growth and tumor-cell proliferation and that combination therapy with ATM and microtubule inhibitors holds promise for the treatment of alveolar rhabdomyosarcoma. 10.1038/onc.2012.46
    The novel dual BET/HDAC inhibitor TW09 mediates cell death by mitochondrial apoptosis in rhabdomyosarcoma cells. Laszig Stephanie,Boedicker Cathinka,Weiser Tim,Knapp Stefan,Fulda Simone Cancer letters Targeting the epigenome of cancer cells with the combination of Bromodomain and Extra Terminal (BET) protein inhibitors and histone deacetylase (HDAC) inhibitors has shown synergistic antitumor effects in several cancer types. In this study, we investigate the antitumor potential of the novel dual BET/HDAC inhibitor TW09 in rhabdomyosarcoma (RMS) cells. TW09 reduces cell viability, suppresses long-term clonogenic survival and induces cell death in RMS cells in a dose-dependent manner. Compared to BET/HDAC co-inhibition using JQ1 and MS-275, TW09 induces similar cell death at equimolar concentrations and regulates BET and HDAC target proteins (e.g. c-MYC, H3 acetylation). Mechanistic studies revealed that TW09 upregulates BIM, NOXA, PUMA and BMF, while downregulating BCL-X, leading to proapoptotic rebalancing of BCL-2 proteins. This results in BAK and BAX activation and caspase-dependent apoptosis, since individual genetic silencing of BIM, NOXA, PUMA, BMF, BAK or BAX, overexpression of BCL-2 or the caspase inhibition with zVAD.fmk all rescue JQ1/BYL719-induced cell death. In conclusion, TW09 shows potent antitumor activity in RMS cells in vitro by inducing mitochondrial apoptosis and may represent a promising new therapeutic option for the treatment of RMS. 10.1016/j.canlet.2020.05.008
    Epigenetically upregulated GEFT-derived invasion and metastasis of rhabdomyosarcoma via epithelial mesenchymal transition promoted by the Rac1/Cdc42-PAK signalling pathway. Liu Chunxia,Zhang Liang,Cui Wenwen,Du Juan,Li Zhenzhen,Pang Yuwen,Liu Qianqian,Shang Hao,Meng Lian,Li Wanyu,Song Lingxie,Wang Ping,Xie Yuwen,Wang Yuanyuan,Liu Yang,Hu Jianming,Zhang Wenjie,Li Feng EBioMedicine BACKGROUND:Metastasis of rhabdomyosarcoma (RMS) is the primary cause of tumour-related deaths. Previous studies have shown that overexpression of the guanine nucleotide exchange factor T (GEFT) is correlated with a poorer RMS prognosis, but the mechanism remains largely unexplored. METHODS:We focused on determining the influence of the GEFT-Rho-GTPase signalling pathway and the epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) on RMS progression and metastasis by using RMS cell lines, BALB/c nude mice and cells and molecular biology techniques. FINDINGS:GEFT promotes RMS cell viability, migration, and invasion; GEFT also inhibits the apoptosis of RMS cells and accelerates the growth and lung metastasis of RMS by activating the Rac1/Cdc42 pathways. Interestingly, GEFT upregulates the expression levels of N-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 and reduces expression level of E-cadherin. Thus, GEFT influences the expression of markers for EMT and MET in RMS cells via the Rac1/Cdc42-PAK1 pathways. We also found that the level of GEFT gene promoter methylation in RMS is lower than that in normal striated muscle tissue. Significant differences were observed in the level of GEFT gene methylation in different histological subtypes of RMS. INTERPRETATION:These findings suggest that GEFT accelerates the tumourigenicity and metastasis of RMS by activating Rac1/Cdc42-PAK signalling pathway-induced EMT; thus, it may serve as a novel therapeutic target. FUND: This work was supported by grants from the National Natural Science Foundation of China (81660441, 81460404, and 81160322) and Shihezi University Initiative Research Projects for Senior Fellows (RCZX201447). Funders had no role in the design of the study, data collection, data analysis, interpretation, or the writing of this report. 10.1016/j.ebiom.2019.10.060
    Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. McKinnon Timothy,Venier Rosemarie,Yohe Marielle,Sindiri Sivasish,Gryder Berkley E,Shern Jack F,Kabaroff Leah,Dickson Brendan,Schleicher Krista,Chouinard-Pelletier Guillaume,Menezes Serena,Gupta Abha,Zhang Xiaohu,Guha Rajarashi,Ferrer Marc,Thomas Craig J,Wei Yuhong,Davani Dariush,Guidos Cynthia J,Khan Javed,Gladdy Rebecca A Oncogene Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and outcomes have stagnated, highlighting a need for novel therapies. Genomic analysis of RMS has revealed that alterations in the receptor tyrosine kinase (RTK)/RAS/PI3K axis are common and that FGFR4 is frequently mutated or overexpressed. Although FGFR4 is a potentially druggable receptor tyrosine kinase, its functions in RMS are undefined. This study tested FGFR4-activating mutations and overexpression for the ability to generate RMS in mice. Murine tumor models were subsequently used to discover potential therapeutic targets and to test a dual PI3K/mTOR inhibitor in a preclinical setting. Specifically, we provide the first mechanistic evidence of differential potency in the most common human RMS mutations, V550E or N535K, compared to FGFR4 overexpression as murine myoblasts expressing FGFR4 undergo higher rates of cellular transformation, engraftment into mice, and rapidly form sarcomas that highly resemble human RMS. Murine tumor cells overexpressing FGFR4 were tested in an in vitro dose-response drug screen along with human RMS cell lines. Compounds were grouped by target class, and potency was determined using average percentage of area under the dose-response curve (AUC). RMS cells were highly sensitive to PI3K/mTOR inhibitors, in particular, GSK2126458 (omipalisib) was a potent inhibitor of FGFR4 tumor-derived cell and human RMS cell viability. FGFR4-overexpressing myoblasts and tumor cells had low nanomolar GSK2126458 EC values. Mass cytometry using mouse and human RMS cell lines validated GSK2126458 specificity at single-cell resolution, decreasing the abundance of phosphorylated Akt as well as decreasing phosphorylation of the downstream mTOR effectors 4ebp1, Eif4e, and S6. Moreover, PI3K/mTOR inhibition also robustly decreased the growth of RMS tumors in vivo. Thus, by developing a preclinical platform for testing novel therapies, we identified PI3K/mTOR inhibition as a promising new therapy for this devastating pediatric cancer. 10.1038/s41388-017-0122-y
    Epigenetic regulator BMI1 promotes alveolar rhabdomyosarcoma proliferation and constitutes a novel therapeutic target. Shields Cara E,Potlapalli Sindhu,Cuya-Smith Selma M,Chappell Sarah K,Chen Dongdong,Martinez Daniel,Pogoriler Jennifer,Rathi Komal S,Patel Shiv A,Oristian Kristianne M,Linardic Corinne M,Maris John M,Haynes Karmella A,Schnepp Robert W Molecular oncology Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma. There are two main subtypes of RMS, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma. ARMS typically encompasses fusion-positive rhabdomyosarcoma, which expresses either PAX3-FOXO1 or PAX7-FOXO1 fusion proteins. There are no targeted therapies for ARMS; however, recent studies have begun to illustrate the cooperation between epigenetic proteins and the PAX3-FOXO1 fusion, indicating that epigenetic proteins may serve as targets in ARMS. Here, we investigate the contribution of BMI1, given the established role of this epigenetic regulator in sustaining aggression in cancer. We determined that BMI1 is expressed across ARMS tumors, patient-derived xenografts, and cell lines. We depleted BMI1 using RNAi and inhibitors (PTC-209 and PTC-028) and found that this leads to a decrease in cell growth/increase in apoptosis in vitro, and delays tumor growth in vivo. Our data suggest that BMI1 inhibition activates the Hippo pathway via phosphorylation of LATS1/2 and subsequent reduction in YAP levels and YAP/TAZ target genes. These results identify BMI1 as a potential therapeutic vulnerability in ARMS and warrant further investigation of BMI1 in ARMS and other sarcomas. 10.1002/1878-0261.12914
    Targeting Hippo-Dependent and Hippo-Independent YAP1 Signaling for the Treatment of Childhood Rhabdomyosarcoma. Slemmons Katherine K,Yeung Choh,Baumgart Joshua T,Juarez Jhazeel O Martinez,McCalla Amy,Helman Lee J Cancer research Rhabdomyosarcoma is the most common childhood soft-tissue sarcoma, yet patients with metastatic or recurrent disease continue to do poorly, indicating a need for new treatments. The SRC family tyrosine kinase YES1 is upregulated in rhabdomyosarcoma and is necessary for growth, but clinical trials using single agent dasatinib, a SRC family kinase inhibitor, have failed in sarcomas. YAP1 (YES-associated protein) is highly expressed in rhabdomyosarcoma, driving growth and survival when the upstream Hippo tumor suppressor pathway is silenced, but efforts to pharmacologically inhibit YAP1 have been unsuccessful. Here we demonstrate that treatment of rhabdomyosarcoma with DNA methyltransferase inhibitor (DNMTi) upregulates Hippo activators RASSF1 and RASSF5 by promoter demethylation, activating canonical Hippo signaling and increasing inactivation of YAP1 by phosphorylation. Treatment with DNMTi decreased rhabdomyosarcoma cell growth and increased apoptosis and differentiation, an effect partially rescued by expression of constitutively active YAP (S127A), suggesting the effects of DNMTi treatment are, in part, due to Hippo-dependent inhibition of YAP1. In addition, YES1 and YAP1 interacted in the nucleus of rhabdomyosarcoma cells, and genetic or pharmacologic suppression of YES1 resulted in cytoplasmic retention of YAP1 and decreased YAP1 target gene expression, suggesting YES1 regulates YAP1 in a Hippo-independent manner. Combined treatment with DNMTi and dasatinib targeted both Hippo-dependent and Hippo-independent regulation of YAP1, ablating rhabdomyosarcoma cell growth and trending toward decreased tumor growth . These results show that the mechanisms regulating YAP1 in rhabdomyosarcoma can be inhibited by combinatorial therapy of DNMTi and dasatinib, laying the groundwork for future clinical investigations. SIGNIFICANCE: This study elucidates the signaling pathways that regulate the oncogenic protein YAP1 and identifies a combination therapy to target these pathways in the childhood tumor rhabdomyosarcoma. 10.1158/0008-5472.CAN-19-3853
    Genetics, epigenetics and redox homeostasis in rhabdomyosarcoma: Emerging targets and therapeutics. Pal Ananya,Chiu Hsin Yao,Taneja Reshma Redox biology Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma accounting for 5-8% of malignant tumours in children and adolescents. Children with high risk disease have poor prognosis. Anti-RMS therapies include surgery, radiation and combination chemotherapy. While these strategies improved survival rates, they have plateaued since 1990s as drugs that target differentiation and self-renewal of tumours cells have not been identified. Moreover, prevailing treatments are aggressive with drug resistance and metastasis causing failure of several treatment regimes. Significant advances have been made recently in understanding the genetic and epigenetic landscape in RMS. These studies have identified novel diagnostic and prognostic markers and opened new avenues for treatment. An important target identified in high throughput drug screening studies is reactive oxygen species (ROS). Indeed, many drugs in clinical trials for RMS impact tumour progression through ROS. In light of such emerging evidence, we discuss recent findings highlighting key pathways, epigenetic alterations and their impacts on ROS that form the basis of developing novel molecularly targeted therapies in RMS. Such targeted therapies in combination with conventional therapy could reduce adverse side effects in young survivors and lead to a decline in long-term morbidity. 10.1016/j.redox.2019.101124