加载中

    Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway. Huang Wenzhen,Liu Chi,Liu Fengen,Liu Zhiyong,Lai Guie,Yi Jian Cell biochemistry and function Hinokiflavone is a natural product, isolated from Selaginella P. Beauv, Juniperus phoenicea and Rhus succedanea. Even though hinokiflavone was reported to possess cytotoxicity to many cancer cells, and has potential in cancer treatment, the anti-proliferation and anti-metastasis efficacy of hinokiflavone on human breast cancer cells has not a further research. In this study, we investigated the anti-cancer activity of hinokiflavone in human breast cancer cells in vitro and in vivo. Hinokiflavone exhibited a time- and dose-dependent manner apoptosis induction by upregulating expression of Bax and downregulating Bcl-2 in breast cancer cells. Furthermore, hinokiflavone significantly inhibited the migration and invasion of breast cancer cells by impairing the process of epithelial-to-mesenchymal transition. In addition, the tumour growth was distinctly inhibited by treatment of hinokiflavone in a xenograft tumour mouse model of MDA-MB-231 cells. Immunohistochemical analysis of tumour sections showed that MMP-2 cells and Ki-67 cells were remarkably decreased in tumour tissues of mice after treatment of hinokiflavone, indicating that hinokiflavone inhibits not only proliferation but also metastasis of breast cancer cells. Our study suggested that hinokiflavone can be a potential drug to breast cancer. SIGNIFICANCE OF THE STUDY: Hinokiflavone significantly inhibited proliferation and induced apoptosis in breast cancer cells. In addition, hinokiflavone remarkably inhibited migration and invasion of breast cancer cells via EMT signalling pathway. It is worth noting that hinokiflavone possesses anti-tumour effect in tumour mouse xenograft model of breast cancer. Overall, our results indicated that hinokiflavone may be a potential anticancer drug for breast cancer treatment. 10.1002/cbf.3443
    The repressive effect of miR-148a on Wnt/β-catenin signaling involved in Glabridin-induced anti-angiogenesis in human breast cancer cells. Mu Juan,Zhu Dongmei,Shen Zhaoxia,Ning Shilong,Liu Yun,Chen Juan,Li Yuan,Li Zhong BMC cancer BACKGROUND:Glabridin (GLA), a major component extracted from licorice root, has anti-inflammatory and antioxidant activities, but few studies report its mechanism of inhibition of angiogenesis. This study was an extension of our previous work, which demonstrated that GLA suppressed angiogenesis in human breast cancer (MDA-MB-231 and Hs-578T) cells. Breast cancer is one of the most common malignant diseases in females worldwide, and the major cause of mortality is metastasis that is primarily attributed to angiogenesis. Thus, anti-angiogenesis has become a strategy for the treatment of breast cancer. METHODS:Cell viability of different concentration treatment groups were detected by Cell Counting Kit-8 assay. The expression of several related genes in the Wnt1 signaling pathway in MDA-MB-231 and Hs-578T cells treated with GLA were measured at both the transcription and translation levels using quantitative real-time PCR analyses and western blotting. Immunofluorescence assay analyzed the nuclear translocation of β-catenin. The microRNA-inhibitor was used to knockdown microRNA-148a (miR-148a) expression. Angiogenic potentials of breast cancer cells were analyzed by enzyme-linked immunosorbent assay (ELISA) and tube formation in vitro. RESULTS:GLA attenuated angiogenesis by the suppression of miR-148a-mediated Wnt/β-catenin signaling pathway in two human breast cancer cell lines (MDA-MB-231 and Hs-578T). GLA also upregulated the expression of miR-148a in a dose-dependent manner, miR-148a, which could directly target Wnt-3'-untranslated regions (UTRs), and decreased the expression of Wnt1, leading to β-catenin accumulation in the membranes from the cytoplasm and nucleus. Downregulation of miR-148a contributed to the reduction of GLA-induced suppression of the Wnt/β-catenin signaling pathway, the angiogenesis and vascular endothelial grow factor (VEGF) secretion. CONCLUSIONS:Our study identified a molecular mechanism of the GLA inhibition of angiogenesis through the Wnt/β-catenin signaling pathway via miR-148a, suggesting that GLA could serve as an adjuvant chemotherapeutic agent for breast cancer. 10.1186/s12885-017-3298-1
    Baicalin inhibits breast cancer development via inhibiting IĸB kinase activation in vitro and in vivo. Gao Yang,Liu Hui,Wang Hongzhi,Hu Hailong,He Hongjuan,Gu Ning,Han Xiao,Guo Qian,Liu Dong,Cui Shuang,Shao Hongjiang,Jin Chengjun,Wu Qiong International journal of oncology The aim of the present study was to investigate the effect and therapeutic potential of baicalin in breast cancer. Baicalin is used to treat inflammatory diseases. The effects of baicalin were assessed in breast cancer MCF-7 and MDA-MB‑231 cells, and human breast cancer xenograft mice. Cells were treated with 0, 20 or 30 µM baicalin for 48 h, while xenograft mice were treated with intraperitoneal injection of 0, 100 or 200 mg/kg baicalin for 30 days. The results demonstrated that treatment with baicalin dose-dependently suppressed breast cancer cell invasion, migration and proliferation, and also induced G1/S-phase cell cycle arrest in vitro and in vivo. Baicalin alleviated inflammation injury and inhibited the secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, thus suppressing nuclear factor (NF)-ĸB-p65 activation via inhibition of IĸB kinase. Investigation of the mechanism underlying baicalin activity indicated that it inhibited protein expression of NF-ĸB-p65, leading to NF-ĸB‑induced increased expression of CCND1, BCL2, BIRC2 and BIRC3, thus inhibiting cell proliferation, invasion and migration and suppressing anti-apoptotic factors in vitro and in vivo. In addition, baicalin did not affect non-tumorigenic normal breast epithelial cells. These results indicate that baicalin may exert therapeutic effects in breast cancer. 10.3892/ijo.2018.4594
    Hydrous icaritin nanorods with excellent stability improves the and activity against breast cancer. Wang Yian,Huang Tiantian,Li Haowen,Fu Jingxin,Ao Hui,Lu Likang,Han Meihua,Guo Yifei,Yue Feng,Wang Xiangtao Drug delivery Due to their various biological activities that are beneficial to human health and antitumor effect, flavonoid compounds have attracted much attention in recent years. Hydrous icaritin (HICT) was such a flavonoid that can inhibit the growth of breast cancer and cancer stem cells. In order to overcome the insolubility problem, HICT was fabricated into nanorods (NRs) through anti-solvent precipitation in this paper using D-α tocopherol acid polyethylene glycol succinate and sodium oleate as a co-stabilizer meanwhile using the mixture of ethanol and acetone (1:2, v/v) as the organic solvent. The obtained HICT NRs showed an average particle size 222.0 nm with a small polydispersity index value of 0.124 and a high zeta potential of - 49.5 mV. HICT NRs could maintain similar particle size in various physiological medium and could be directly lyophilized without the addition of any cytoprotectants and then reconstituted into a colloidal system of similar size. The resultant HICT NRs had a high drug loading content of 55.6% and released HICT in a steady and constant pattern. MTT assay indicated NRs enhanced HICT's antitumor activity to ninefold against MCF-7 breast carcinoma cells. studies demonstrated oral administration free HICT had almost no tumor inhibitory effect while HICT NRs showed a tumor inhibition rate of 47.8%. When intravenously injected, HICT NRs displayed similar therapeutic efficacy to paclitaxel injections (70.4% vs. 74.5%, TIR). This may be partly due to the high accumulation of the injected HICT NRs in tumor ranking only second to that in the liver but much higher than in other organs. These results demonstrated that HICT NRs could be a promising antitumor agent for the treatment of breast cancer in clinic. 10.1080/10717544.2020.1716877
    Pretreatment of Anthocyanin from the Fruit of Acts as a Potent Inhibitor of TNF-α Effect by Inhibiting NF-κB-Regulated Genes in Human Breast Cancer Cells. Paramanantham Anjugam,Kim Min Jeong,Jung Eun Joo,Nagappan Arulkumar,Yun Jeong Won,Kim Hye Jung,Shin Sung Chul,Kim Gon Sup,Lee Won Sup Molecules (Basel, Switzerland) (Meoru in Korea) has been used in Korean folk medicine for the treatment of inflammatory diseases and cancers. Evidence suggests that NF-κB activation is mainly involved in cancer cell proliferation, invasion, angiogenesis, and metastasis. TNF-α also enhances the inflammatory process in tumor development. Recently, flavonoids from plants have been reported to have inhibitory effects on NF-κB activities. We investigated the effects of anthocyanins extracted from the fruits of (AIM, anthocyanins isolated from Meoru (AIM)) on TNF-α-induced NF-κB activities in MCF-7 human breast cancer cells and the molecules involved in AIM-induced anti-cancer effects, especially on cancer metastasis. We performed cell viability assay, gelatin zymography, invasion assay, and western blot analysis to unravel the anti-NF-κB activity of AIMs on MCF-7 cells. AIM suppressed the TNF-α effects on the NF-κB-regulated proteins involved in cancer cell proliferation (COX-2, C-myc), invasion, and angiogenesis (MMP-2, MMP9, ICAM-1, and VEGF). AIM also increased the expression of E-cadherin, which is one of the hallmarks of the epithelial-mesenchymal transition (EMT) process. In conclusion, this study demonstrates that the anthocyanins isolated from the fruits of acts as an inhibitor of TNF-α induced NF-κB activation, and subsequent downstream molecules involved in cancer proliferation, invasion, adhesion, angiogenesis, and thus have anti-metastatic activities in MCF-7 breast cancer cells. 10.3390/molecules25102396
    Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM. Cheng Xia,Tan Shirui,Duan Feifei,Yuan Qingqing,Li Qingrong,Deng Gang Breast cancer (Tokyo, Japan) BACKGROUND:Icariin is a major component isolated from Epimedium brevicornum Maxim and has been reported to exhibit anti-tumor activity. However, whether icariin could reverse the acquired drug resistance in breast cancer remains largely unclear. Therefore, this study was designed to explore the antitumor effects of icariin and its underlying mechanisms in a tamoxifen-resistant breast cancer cell line MCF-7/TAM. METHODS:3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Lactate dehydrogenase (LDH) assay were performed to determine the effects of icariin on cell viability and cell death. Cell cycle progression and apoptosis were detected by flow cytometry analysis. Transmission electron microscopy (TEM) assay was utilized to observe cell autophagy. The downstream protein levels were measured using western blotting. RESULTS:Here, we observed that icariin treatment not only inhibited the growth of MCF-7 but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Moreover, icariin significantly induced cell cycle G0/G1 phase arrest and apoptosis, as well as suppressed autophagy. At molecular levels, icariin treatment remarkably down-regulated the expression levels of CDK2, CDK4, Cyclin D1, Bcl-2, LC3-1, LC3-II, AGT5, Beclin-1, but upregulated the expression levels of caspase-3, PARP and p62. Most importantly, we found inhibition of autophagy via 3-MA treatment could significantly enhance the effects of icariin on cell viability and apoptosis. Enhanced autophagy via autophagy related 5 (ATG5) overexpression could partially reverse the effects of icariin on cell viability and apoptosis. CONCLUSION:These results revealed that icariin might potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen through suppression of autophagy in vitro and provide insight into the therapeutic potential of icariin for the treatment of chemo-resistant breast cancer. 10.1007/s12282-019-00980-5