Methyltransferase Dot1l preferentially promotes innate IL-6 and IFN-β production by mediating H3K79me2/3 methylation in macrophages. Chen Xiang,Liu Xingguang,Zhang Yunkai,Huai Wanwan,Zhou Qingqing,Xu Sheng,Chen Xi,Li Nan,Cao Xuetao Cellular & molecular immunology Epigenetic modification, including histone modification, precisely controls target gene expression. The posttranscriptional regulation of the innate signaling-triggered production of inflammatory cytokines and type I interferons has been fully elucidated, whereas the roles of histone modification alteration and epigenetic modifiers in regulating inflammatory responses need to be further explored. Di/tri-methylation modifications of histone 3 lysine 79 (H3K79me2/3) have been shown to be associated with gene transcriptional activation. Disruptor of telomeric silencing-1-like (Dot1l) is the only known exclusive H3K79 methyltransferase and regulates the proliferation and differentiation of tumor cells. However, the roles of Dot1l and Dot1l-mediated H3K79 methylation in innate immunity and inflammatory responses remain unclear. Here, we found that H3K79me2/3 modification levels at the Il6 and Ifnb1 promoters, as well as H3K79me2 modification at the Tnfα promoter, were increased in macrophages activated by Toll-like receptor (TLR) ligands or virus infection. The innate signals upregulated Dot1l expression in macrophages and THP1 cells. Dot1l silencing or a Dot1l inhibitor preferentially suppressed the production of IL-6 and interferon (IFN)-β but not of TNF-α in macrophages and THP1 cells triggered by TLR ligands or virus infection. Dot1l was recruited to the proximal promoter of the Il6 and Ifnb1 but not Tnfα gene and then mediated H3K79me2/3 modification at the Il6 and Ifnb1 promoters, consequently facilitating the transcription and expression of Il6 and Ifnb1. Thus, Dot1l-mediated selective H3K79me2/3 modifications at the Il6 and Ifnb1 promoters are required for the full activation of innate immune responses. This finding adds new insights into the epigenetic regulation of inflammatory responses and pathogenesis of autoimmune diseases. 10.1038/s41423-018-0170-4
    Mllt10 knockout mouse model reveals critical role of Af10-dependent H3K79 methylation in midfacial development. Ogoh Honami,Yamagata Kazutsune,Nakao Tomomi,Sandell Lisa L,Yamamoto Ayaka,Yamashita Aiko,Tanga Naomi,Suzuki Mai,Abe Takaya,Kitabayashi Issay,Watanabe Toshio,Sakai Daisuke Scientific reports Epigenetic regulation is required to ensure the precise spatial and temporal pattern of gene expression that is necessary for embryonic development. Although the roles of some epigenetic modifications in embryonic development have been investigated in depth, the role of methylation at lysine 79 (H3K79me) is poorly understood. Dot1L, a unique methyltransferase for H3K79, forms complexes with distinct sets of co-factors. To further understand the role of H3K79me in embryogenesis, we generated a mouse knockout of Mllt10, the gene encoding Af10, one Dot1L complex co-factor. We find homozygous Mllt10 knockout mutants (Mllt10-KO) exhibit midline facial cleft. The midfacial defects of Mllt10-KO embryos correspond to hyperterolism and are associated with reduced proliferation of mesenchyme in developing nasal processes and adjacent tissue. We demonstrate that H3K79me level is significantly decreased in nasal processes of Mllt10-KO embryos. Importantly, we find that expression of AP2α, a gene critical for midfacial development, is directly regulated by Af10-dependent H3K79me, and expression AP2α is reduced specifically in nasal processes of Mllt10-KO embryos. Suppression of H3K79me completely mimicked the Mllt10-KO phenotype. Together these data are the first to demonstrate that Af10-dependent H3K79me is essential for development of nasal processes and adjacent tissues, and consequent midfacial formation. 10.1038/s41598-017-11745-5
    Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells. Guppy Brent J,McManus Kirk J Genetics The loss of genome stability is an early event that drives the development and progression of virtually all tumor types. Recent studies have revealed that certain histone post-translational modifications exhibit dynamic and global increases in abundance that coincide with mitosis and exhibit essential roles in maintaining genomic stability. Histone H2B ubiquitination at lysine 120 (H2Bub1) is regulated by RNF20, an E3 ubiquitin ligase that is altered in many tumor types. Through an evolutionarily conserved trans-histone pathway, H2Bub1 is an essential prerequisite for subsequent downstream dimethylation events at lysines 4 (H3K4me2) and 79 (H3K79me2) of histone H3. Although the role that RNF20 plays in tumorigenesis has garnered much attention, the downstream components of the trans-histone pathway, H3K4me2 and H3K79me2, and their potential contributions to genome stability remain largely overlooked. In this study, we employ single-cell imaging and biochemical approaches to investigate the spatial and temporal patterning of RNF20, H2Bub1, H3K4me2, and H3K79me2 throughout the cell cycle, with a particular focus on mitosis. We show that H2Bub1, H3K4me2, and H3K79me2 exhibit distinct temporal progression patterns throughout the cell cycle. Most notably, we demonstrate that H3K79me2 is a highly dynamic histone post-translational modification that reaches maximal abundance during mitosis in an H2Bub1-independent manner. Using RNAi and chemical genetic approaches, we identify DOT1L as a histone methyltransferase required for the mitotic-associated increases in H3K79me2. We also demonstrate that the loss of mitotic H3K79me2 levels correlates with increases in chromosome numbers and increases in mitotic defects. Collectively, these data suggest that H3K79me2 dynamics during mitosis are normally required to maintain genome stability and further implicate the loss of H3K79me2 during mitosis as a pathogenic event that contributes to the development and progression of tumors. 10.1534/genetics.114.172874
    Evidence that ubiquitylated H2B corrals hDot1L on the nucleosomal surface to induce H3K79 methylation. Zhou Linjiao,Holt Matthew T,Ohashi Nami,Zhao Aishan,Müller Manuel M,Wang Boyuan,Muir Tom W Nature communications Ubiquitylation of histone H2B at lysine 120 (H2B-Ub), a post-translational modification first discovered in 1980, plays a critical role in diverse nuclear processes including the regulation of transcription and DNA damage repair. Herein, we use a suite of protein chemistry methods to explore how H2B-Ub stimulates hDot1L-mediated methylation of histone H3 on lysine 79 (H3K79me). By using semisynthetic 'designer' chromatin containing H2B-Ub bearing a site-specifically installed photocrosslinker, here we report an interaction between a functional hotspot on ubiquitin and the N-terminus of histone H2A. Our biochemical studies indicate that this interaction is required for stimulation of hDot1L activity and leads to a repositioning of hDot1L on the nucleosomal surface, which likely places the active site of the enzyme proximal to H3K79. Collectively, our data converge on a possible mechanism for hDot1L stimulation in which H2B-Ub physically 'corrals' the enzyme into a productive binding orientation. 10.1038/ncomms10589
    Histone H3K79 demethylation by KDM2B facilitates proper DNA replication through PCNA dissociation from chromatin. Kang Joo-Young,Park Jin Woo,Hahm Ja Young,Jung Hyeonsoo,Seo Sang-Beom Cell proliferation OBJECTIVES:The level of histone H3 lysine 79 methylation is regulated by the cell cycle and involved in cell proliferation. KDM2B is an H3K79 demethylase. Proliferating cell nuclear antigen (PCNA) is a component of the DNA replication machinery. This study aimed at elucidating a molecular link between H3K79me recognition of PCNA and cell cycle control. MATERIALS AND METHODS:We generated KDM2B-depleted 293T cells and histone H3-K79R mutant-expressing 293T cells. Western blots were primarily utilized to examine the H3K79me level and its effect on subsequent PCNA dissociation from chromatin. We applied IP, peptide pull-down, isothermal titration calorimetry (ITC) and ChIP experiments to show the PCNA binding towards methylated H3K79 and DNA replication origins. Flow cytometry, MTT, iPOND and DNA fibre assays were used to assess the necessity of KDM2B for DNA replication and cell proliferation. RESULTS:We revealed that KDM2B-mediated H3K79 demethylation regulated cell cycle progression. We found that PCNA bound chromatin in an H3K79me-dependent manner during S phase. KDM2B was responsible for the timely dissociation of PCNA from chromatin, allowing to efficient DNA replication. Depletion of KDM2B aberrantly enriched chromatin with PCNA and caused slow dissociation of residual PCNA, leading to a negative effect on cell proliferation. CONCLUSIONS:We suggested a novel interaction between PCNA and H3K79me. Thus, our findings provide a new mechanism of KDM2B in regulation of DNA replication and cell proliferation. 10.1111/cpr.12920
    DOT1L and H3K79 Methylation in Transcription and Genomic Stability. Wood Katherine,Tellier Michael,Murphy Shona Biomolecules The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability. 10.3390/biom8010011
    Dynamics of DOT1L localization and H3K79 methylation during meiotic prophase I in mouse spermatocytes. Ontoso David,Kauppi Liisa,Keeney Scott,San-Segundo Pedro A Chromosoma During meiotic prophase I, interactions between maternal and paternal chromosomes, under checkpoint surveillance, establish connections between homologs that promote their accurate distribution to meiotic progeny. In human, faulty meiosis causes aneuploidy resulting in miscarriages and genetic diseases. Meiotic processes occur in the context of chromatin; therefore, histone post-translational modifications are expected to play important roles. Here, we report the cytological distribution of the evolutionarily conserved DOT1L methyltransferase and the different H3K79 methylation states resulting from its activity (mono-, di- and tri-methylation; H3K79me1, me2 and me3, respectively) during meiotic prophase I in mouse spermatocytes. In the wild type, whereas low amounts of H3K79me1 are rather uniformly present throughout prophase I, levels of DOT1L, H3K79me2 and H3K79me3 exhibit a notable increase from pachynema onwards, but with differential subnuclear distribution patterns. The heterochromatic centromeric regions and the sex body are enriched for H3K79me3. In contrast, H3K79me2 is present all over the chromatin, but is largely excluded from the sex body despite the accumulation of DOT1L. In meiosis-defective mouse mutants, the increase of DOT1L and H3K79me is blocked at the same stage where meiosis is arrested. H3K79me patterns, combined with the cytological analysis of the H3.3, γH2AX, macroH2A and H2A.Z histone variants, are consistent with a differential role for these epigenetic marks in male mouse meiotic prophase I. We propose that H3K79me2 is related to transcriptional reactivation on autosomes during pachynema, whereas H3K79me3 may contribute to the maintenance of repressive chromatin at centromeric regions and the sex body. 10.1007/s00412-013-0438-5
    Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Valencia-Sánchez Marco Igor,De Ioannes Pablo,Wang Miao,Truong David M,Lee Rachel,Armache Jean-Paul,Boeke Jef D,Armache Karim-Jean Science (New York, N.Y.) Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state. 10.1126/science.abc6663
    LSD1-LIKE1-Mediated H3K4me2 Demethylation Is Required for Homologous Recombination Repair. Hirakawa Takeshi,Kuwata Keiko,Gallego Maria E,White Charles I,Nomoto Mika,Tada Yasuomi,Matsunaga Sachihiro Plant physiology Homologous recombination is a key process for maintaining genome integrity and diversity. In eukaryotes, the nucleosome structure of chromatin inhibits the progression of homologous recombination. The DNA repair and recombination protein RAD54 alters the chromatin structure via nucleosome sliding to enable homology searches. For homologous recombination to progress, appropriate recruitment and dissociation of RAD54 is required at the site of homologous recombination; however, little is known about the mechanism regulating RAD54 dynamics in chromatin. Here, we reveal that the histone demethylase LYSINE-SPECIFIC DEMETHYLASE1-LIKE 1 (LDL1) regulates the dissociation of RAD54 at damaged sites during homologous recombination repair in the somatic cells of Arabidopsis (). Depletion of LDL1 leads to an overaccumulation of RAD54 at damaged sites with DNA double-strand breaks. Moreover, RAD54 accumulates at damaged sites by recognizing histone H3 Lys 4 di-methylation (H3K4me2); the frequency of the interaction between RAD54 and H3K4me2 increased in the mutant with DNA double-strand breaks. We propose that LDL1 removes RAD54 at damaged sites by demethylating H3K4me2 during homologous recombination repair and thereby maintains genome stability in Arabidopsis. 10.1104/pp.19.00530