加载中

    Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. Martin Cathie,Li Jie The New phytologist Contents 699 I. 699 II. 700 III. 700 IV. 706 V. 707 VI. 714 714 References 714 SUMMARY: Plants make substantial contributions to our health through our diets, providing macronutrients for energy and growth as well as essential vitamins and phytonutrients that protect us from chronic diseases. Imbalances in our food can lead to deficiency diseases or obesity and associated metabolic disorders, increased risk of cardiovascular diseases and cancer. Nutritional security is now a global challenge which can be addressed, at least in part, through plant metabolic engineering for nutritional improvement of foods that are accessible to and eaten by many. We review the progress that has been made in nutritional enhancement of foods, both improvements through breeding and through biotechnology and the engineering principles on which increased phytonutrient levels are based. We also consider the evidence, where available, that such foods do enhance health and protect against chronic diseases. 10.1111/nph.14730
    Modular design: Implementing proven engineering principles in biotechnology. Garcia Sergio,Trinh Cong T Biotechnology advances Modular design is at the foundation of contemporary engineering, enabling rapid, efficient, and reproducible construction and maintenance of complex systems across applications. Remarkably, modularity has recently been discovered as a governing principle in natural biological systems from genes to proteins to complex networks within a cell and organism communities. The convergent knowledge of natural and engineered modular systems provides a key to drive modern biotechnology to address emergent challenges associated with health, food, energy, and the environment. Here, we first present the theory and application of modular design in traditional engineering fields. We then discuss the significance and impact of modular architectures on systems biology and biotechnology. Next, we focus on the very recent theoretical and experimental advances in modular cell engineering that seeks to enable rapid and systematic development of microbial catalysts capable of efficiently synthesizing a large space of useful chemicals. We conclude with an outlook towards theoretical and practical opportunities for a more systematic and effective application of modular cell engineering in biotechnology. 10.1016/j.biotechadv.2019.06.002
    [Intergrating problem-based-learning with flipped classroom teaching in "Principles of chemical engineering" for biological engineering undergraduates]. Li Lu,Xiao Nan,Xie Xinan,Li Yan Sheng wu gong cheng xue bao = Chinese journal of biotechnology New engineering program requires training models that conform acceptable time span and principles of engineering education. Considering the program "Principles of chemical engineering" and the limitations of traditional teaching methods, we integrated problem-based learning method and flipped classroom teaching model to reform the course. Through a three-stage systematic teaching design including knowledge learning before class, knowledge internalization in class, and consolidation and expansion after class, we effectively stimulated students' interest and enthusiasm in learning, cultivated students' independent learning ability and engineering thinking, and achieved good teaching effect. It can provide reference for the construction of "Principles of chemical engineering" course and training of engineering talents in agricultural colleges. 10.13345/j.cjb.190594