1. Possible role of L-form switching in recurrent urinary tract infection.
1. L型转换在复发性尿路感染中的可能作用。
期刊:Nature communications
日期:2019-09-26
DOI :10.1038/s41467-019-12359-3
Recurrent urinary tract infection (rUTI) is a major medical problem, especially in the elderly and infirm, but the nature of the reservoir of organisms responsible for survival and recolonisation after antibiotic treatment in humans is unclear. Here, we demonstrate the presence of cell-wall deficient (L-form) bacteria in fresh urine from 29 out of 30 older patients with rUTI. In urine, E. coli strains from patient samples readily transition from the walled state to L-form during challenge with a cell wall targeting antibiotic. Following antibiotic withdrawal, they then efficiently transition back to the walled state. E. coli switches between walled and L-form states in a zebrafish larva infection model. The results suggest that L-form switching is a physiologically relevant phenomenon that may contribute to the recurrence of infection in older patients with rUTI, and potentially other infections.
添加收藏
创建看单
引用
2区Q2影响因子: 3.8
跳转PDF
登录
英汉
2. The Gram-Positive Bacterial Cell Wall.
2. 对革兰氏阳性菌的细胞壁。
期刊:Microbiology spectrum
日期:2019-05-01
DOI :10.1128/microbiolspec.GPP3-0044-2018
The chapter about the Gram-positive bacterial cell wall gives a brief historical background on the discovery of Gram-positive cell walls and their constituents and microscopic methods applied for studying the Gram-positive cell envelope. Followed by the description of the different chemical building blocks of peptidoglycan and the biosynthesis of the peptidoglycan layers and high turnover of peptidoglycan during bacterial growth. Lipoteichoic acids and wall teichoic acids are highlighted as major components of the cell wall. Characterization of capsules and the formation of extracellular vesicles by Gram-positive bacteria close the section on cell envelopes which have a high impact on bacterial pathogenesis. In addition, the specialized complex and unusual cell wall of mycobacteria is introduced thereafter. Next a short back view is given on the development of electron microscopic examinations for studying bacterial cell walls. Different electron microscopic techniques and methods applied to examine bacterial cell envelopes are discussed in the view that most of the illustrated methods should be available in a well-equipped life sciences orientated electron microscopic laboratory. In addition, newly developed and mostly well-established cryo-methods like high-pressure freezing and freeze-substitution (HPF-FS) and cryo-sections of hydrated vitrified bacteria (CEMOVIS, Cryo-electron microscopy of vitreous sections) are described. At last, modern cryo-methods like cryo-electron tomography (CET) and cryo-FIB-SEM milling (focus ion beam-scanning electron microscopy) are introduced which are available only in specialized institutions, but at present represent the best available methods and techniques to study Gram-positive cell walls under close-to-nature conditions in great detail and at high resolution.
添加收藏
创建看单
引用
1区Q1影响因子: 14.9
英汉
3. Cell Wall Deficiency as a Coping Strategy for Stress.
3. 细胞壁缺乏症作为应对压力的策略。
作者:Claessen Dennis , Errington Jeff
期刊:Trends in microbiology
日期:2019-08-13
DOI :10.1016/j.tim.2019.07.008
The cell wall is a surface layer located outside the cell membrane of almost all bacteria; it protects cells from environmental stresses and gives them their typical shape. The cell wall is highly conserved in bacteria and is the target for some of our best antibiotics. Surprisingly, some bacteria are able to shed their wall under the influence of stress, yielding cells that are cell-wall-deficient. Notably, wall-deficient cells are flexible and are able to maneuver through narrow spaces, insensitive to wall-targeting antibiotics, and capable of taking up and exchanging DNA. Moreover, given that wall-associated epitopes are often recognized by host defense systems, wall deficiency provides a plausible explanation for how some bacteria may hide in their host. In this review we focus on this paradoxical stress response, which provides cells with unique opportunities that are unavailable to walled cells.