logo logo
A Novel Diabetic Mouse Model for Real-Time Monitoring of Clock Gene Oscillation and Blood Pressure Circadian Rhythm. Hou Tianfei,Su Wen,Guo Zhenheng,Gong Ming C Journal of biological rhythms Diabetic patients have an increased prevalence of blood pressure (BP) circadian rhythm disruption, which is associated with an increased risk of target organ damage and detrimental cardiovascular events. Limited information is available regarding the role of clock genes in the disruption of BP circadian rhythm in diabetes due to the lack of a diabetic animal model that allows real-time monitoring of clock gene oscillation. Here, we generated a novel diabetic db/db-mPer2 mouse model by crossing type 2 diabetic db/db mice with mPer2 knock-in mice. The daily rhythms of BP, heart rate, locomotor activity, and food and water intake were acquired by radiotelemetry or using metabolic chambers. The daily oscillation of mPer2 bioluminescence was recorded by LumiCycle in real-time in tissue explants and using the IVIS system in vivo. Our results show that db/db-mPer2 mice are obese, diabetic, and glucose intolerant. The db/db-mPer2 mice displayed a compromised BP daily rhythm, which was associated with disrupted daily rhythms in baroreflex sensitivity, locomotor activity, and metabolism, but not heart rate or food and water intake. The phase of the mPer2 daily oscillation was advanced to different extents in the explanted peripheral tissues from db/db-mPer2 mice relative to control mice. In contrast, no phase shift was detected in mPer2 daily oscillations in the explanted SCN. Moreover, advanced phase shift of the mPer2 daily oscillation was detected in the liver, kidney and submandibular gland in vivo of db/db-mPer2 mice. In conclusion, the diabetic db/db-mPer2 mouse is a novel animal model that allows real-time monitoring of mPer2 circadian rhythms ex vivo and in vivo. The results from db/db-mPer2 mice suggest that the desynchrony of mPer2 daily oscillation in peripheral tissues contributes to the loss of BP daily oscillation in diabetes. 10.1177/0748730418803719
The association between circulating endostatin and a disturbed circadian blood pressure pattern in patients with type 2 diabetes. Wuopio Jonas,Östgren Carl Johan,Länne Toste,Lind Lars,Ruge Toralph,Carlsson Axel C,Larsson Anders,Nyström Fredrik H,Ärnlöv Johan Blood pressure BACKGROUND:Endostatin, cleaved from collagen XVIII in the extracellular matrix, is a promising circulating biomarker for cardiovascular damage. It possesses anti-angiogenic and anti-fibrotic functions and has even been suggested to be involved in blood pressure regulation. Less is known if endostatin levels relate to circadian blood pressure patterns. In the present paper we studied the association between circulating levels of endostatin and nocturnal dipping in blood pressure. METHODS:We used the CARDIPP-study, a cohort of middle aged, type 2 diabetics (n = 593, 32% women), with data on both 24-hour and office blood pressure, serum-endostatin, cardiovascular risk factors, and incident major cardiovascular events. Nocturnal dipping was defined as a >10% difference between day- and night-time blood pressures. RESULTS:Two-hundred four participants (34%) were classified as non-dippers. The mean endostatin levels were significantly higher in non-dippers compared to dippers (mean ± standard deviation: 62.6 ± 1.8 µg/l vs. 58.7 ± 1.6 µg/l, respectively, p = .007). Higher serum levels of endostatin were associated with a diminished decline in nocturnal blood pressure adjusted for age, sex, HbA1c, mean systolic day blood pressure, hypertension treatment, glomerular filtration rate, and prevalent cardiovascular disease (regression coefficient per SD increase of endostatin -0.01, 95% CI, -0.02-(-0.001), p = .03). Structural equation modelling analyses suggest that endostatin mediates 7% of the association between non-dipping and major cardiovascular events. CONCLUSION:We found an independent association between higher circulating levels of endostatin and a reduced difference between day- and night-time systolic blood pressure in patients with type 2 diabetes. Yet endostatin mediated only a small portion of the association between non-dipping and cardiovascular events arguing against a clinical utility of our findings. 10.1080/08037051.2018.1444941