logo logo
From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Manolagas Stavros C Endocrine reviews Estrogen deficiency has been considered the seminal mechanism of osteoporosis in both women and men, but epidemiological evidence in humans and recent mechanistic studies in rodents indicate that aging and the associated increase in reactive oxygen species (ROS) are the proximal culprits. ROS greatly influence the generation and survival of osteoclasts, osteoblasts, and osteocytes. Moreover, oxidative defense by the FoxO transcription factors is indispensable for skeletal homeostasis at any age. Loss of estrogens or androgens decreases defense against oxidative stress in bone, and this accounts for the increased bone resorption associated with the acute loss of these hormones. ROS-activated FoxOs in early mesenchymal progenitors also divert ss-catenin away from Wnt signaling, leading to decreased osteoblastogenesis. This latter mechanism may be implicated in the pathogenesis of type 1 and 2 diabetes and ROS-mediated adverse effects of diabetes on bone formation. Attenuation of Wnt signaling by the activation of peroxisome proliferator-activated receptor gamma by ligands generated from lipid oxidation also contributes to the age-dependent decrease in bone formation, suggesting a mechanistic explanation for the link between atherosclerosis and osteoporosis. Additionally, increased glucocorticoid production and sensitivity with advancing age decrease skeletal hydration and thereby increase skeletal fragility by attenuating the volume of the bone vasculature and interstitial fluid. This emerging evidence provides a paradigm shift from the "estrogen-centric" account of the pathogenesis of involutional osteoporosis to one in which age-related mechanisms intrinsic to bone and oxidative stress are protagonists and age-related changes in other organs and tissues, such as ovaries, accentuate them. 10.1210/er.2009-0024
Bone turnover markers: use in osteoporosis. Naylor Kim,Eastell Richard Nature reviews. Rheumatology Biochemical markers of bone turnover (bone turnover markers, BTMs) can be used to study changes in bone remodelling in osteoporosis. Investigators and clinicians should be aware of the appropriate sample collection and storage conditions for optimum measurements of these markers. Improvements in the variability of BTM measurements have resulted from the development of assays for automated analysers, and from international consensus regarding their use. Appropriate reference intervals should be used for the optimum interpretation of results. BTMs can provide information that is useful for the management of patients with osteoporosis, for both the initial clinical assessment and for guiding and monitoring of treatment. BTMs are clinically useful to determine possible causes of secondary osteoporosis by identifying patients with high bone turnover and rapid bone loss. In the follow-up of treatment response, BTM levels respond rapidly to both anabolic and antiresorptive treatments. BTM changes can also be used for understanding the mechanism of action of drugs in development and identifying the correct dose; they are also potentially useful as surrogate biomarkers for fracture. 10.1038/nrrheum.2012.86
Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Osako Mariana Kiomy,Nakagami Hironori,Koibuchi Nobutaka,Shimizu Hideo,Nakagami Futoshi,Koriyama Hiroshi,Shimamura Munehisa,Miyake Takashi,Rakugi Hiromi,Morishita Ryuichi Circulation research RATIONALE:Arterial calcification and osteoporosis are associated in postmenopausal women. RANK (the receptor activator of nuclear factor kappaB), RANKL (RANK ligand), and osteoprotegerin are key proteins in bone metabolism and have been found at the site of aortic calcification. The role of these proteins in vasculature, as well as the contribution of estrogen to vascular calcification, is poorly understood. OBJECTIVE:To clarify the mechanism of RANKL system to vascular calcification in the context of estrogen deficiency. METHODS AND RESULTS:RANKL induced the calcification inducer bone morphogenetic protein-2 by human aortic endothelial cells (HAECs) and decreased the calcification inhibitor matrix Gla protein (MGP) in human aortic smooth muscle cells (HASMCs), as quantified by real-time PCR and Western blot analysis. RANKL also induced bone-related gene mRNA expression and calcium deposition (Alizarin red staining) followed by the osteogenic differentiation of HASMCs. Estrogen inhibited RANKL signaling in HAECs and HASMCs mainly through estrogen receptor alpha. Apolipoprotein E-deficient mice fed with Western high-fat diet for 3 months presented atherosclerotic calcification (Oil red and Alizarin red staining) and osteoporosis (microcomputed tomographic analysis) after ovariectomy and increased expression of RANKL, RANK, and osteopontin in atherosclerotic lesion, as detected by in situ hybridization. Estrogen replacement inhibited osteoporosis and the bone morphogenetic protein osteogenic pathway in aorta by decreasing phosphorylation of smad-1/5/8 and increasing MGP mRNA expression. CONCLUSIONS:RANKL contributes to vascular calcification by regulating bone morphogenetic protein-2 and MGP expression, as well as bone-related proteins, and is counteracted by estrogen in a receptor-dependent manner. 10.1161/CIRCRESAHA.110.216846