logo logo
The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Li Xian-Zhi,Plésiat Patrick,Nikaido Hiroshi Clinical microbiology reviews The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. 10.1128/CMR.00117-14
Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Vergalli Julia,Bodrenko Igor V,Masi Muriel,Moynié Lucile,Acosta-Gutiérrez Silvia,Naismith James H,Davin-Regli Anne,Ceccarelli Matteo,van den Berg Bert,Winterhalter Mathias,Pagès Jean-Marie Nature reviews. Microbiology Gram-negative bacteria and their complex cell envelope, which comprises an outer membrane and an inner membrane, are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control the cellular uptake of small molecules, including nutrients and antibacterial agents. The relatively slow porin-mediated passive uptake across the outer membrane and active efflux via efflux pumps in the inner membrane creates a permeability barrier. The synergistic action of outer membrane permeability, efflux pump activities and enzymatic degradation efficiently reduces the intracellular concentrations of small molecules and contributes to the emergence of antibiotic resistance. In this Review, we discuss recent advances in our understanding of the molecular and functional roles of general porins in small-molecule translocation in Enterobacteriaceae and consider the crucial contribution of porins in antibiotic resistance. 10.1038/s41579-019-0294-2
Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. Clausell Adrià,Garcia-Subirats Maria,Pujol Montserrat,Busquets M Antonia,Rabanal Francesc,Cajal Yolanda The journal of physical chemistry. B Most Gram-negative bacteria are susceptible to polymyxin B (PxB), and development of resistance to this cationic lipopeptide is very rare. PxB mechanism of action involves interaction with both the outer membrane (OM) and the inner membrane (IM) of bacteria. For the design of new antibiotics based on the structure of PxB and with improved therapeutic indexes, it is essential to establish the key features of PxB that are important for activity. We have used an approach based on mimicking the outer layers of the OM and the IM of Gram-negative bacteria using monolayers of lipopolysaccharide (LPS) or anionic 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), respectively, and using a combination of penetration assay, analysis of pressure/area curves, and Brewster angle microscopy to monitor surface morphology changes. Synthetic analogue sp-B maintains the basic structural characteristics of the natural compound and interacts with the OM and the IM in a similar way. Analogue sp-C, with a mutation of the sequence [d-Phe6-Leu7] into [d-Phe6-Dab7], shows that this hydrophobic domain is involved in LPS binding. The significant role of the positive charges is demonstrated with sp-Dap analogue, where l-alpha,gamma-diaminobutyric acid residues Dab1 and Dab8 are replaced by l-alpha,gamma-diaminopropionic acid (Dap), resulting in lower degrees of insertion in both LPS and PG monolayers. The importance of the N-terminal acyl chain is demonstrated with polymyxin B nonapeptide (PxB-np). PxB-np shows lower affinity for LPS compared to PxB, sp-B, or sp-C, but it does not insert into PG monolayers, although it binds superficially to the anionic film. Since PxB microbial killing appears to be mediated by osmotic instability due to OM-IM phospholipid exchange, the ability of the different peptides to induce membrane-membrane lipid exchange has been studied by use of phospholipid unilamellar vesicles. Results indicate that cationic amphipathicity determines peptide activity. 10.1021/jp064757+
Heterogeneity in lipid composition of the outer membrane and cytoplasmic membrane and cytoplasmic membrane of Pseudomonas BAL-31. Diedrich D L,Cota-Robles E H Journal of bacteriology The outer membranes and cytoplasmic membranes of the marine bacterium Pseudomonas BAL-31 were separated by washing the cells three times in 0.5 M NaCl and twice in 0.5 M sucrose. Electron microscopy during the removal of membranes revealed that the outer membranes fragmented in a regular manner to give rise to fairly uniform vesicles measuring approximately 140 nm in diameter. Isolated outer membranes had a buoyant density in sucrose of 1.230 g per cm(3), whereas the cytoplasmic membranes had a density of 1.194 g per cm(3). The removal of the outer membrane during the application of this procedure was monitored by measuring the release of 2-keto-3-deoxyoctulosonic acid and phospholipid. The cells lost 85.5% of their 2-keto-3-deoxyoctulosonic acid and 47.3% of their phospholipid during this treatment. Complete recovery of outer membrane material could be achieved. The removal of 25.5% of the 2-keto-3-deoxyoctulosonic acid and 0.9% of the phospholipid rendered the cells sensitive to lysis with Triton X-100. The phospholipid composition of the outer membrane was calculated to be 78.9% phosphatidylethanolamine and 16.1% phosphatidylglycerol. The phospholipid composition of the cytoplasmic membrane proved to be 71.5% phosphatidylethanolamine and 23.5% phosphatidylglycerol. The fatty acid composition was also found to be quantitatively heterogeneous between the two membranes. 10.1128/jb.119.3.1006-1018.1974
Interaction of lipopolysaccharide with detergents and its possible role in the detergent resistance of the outer membrane of Gram-negative bacteria. Nixdorff K,Gmeiner J,Martin H H Biochimica et biophysica acta In the presence of MgCl2, amounts of detergents which disrupted phospholipid vesicles caused lipopolysaccharide I from Proteus mirabilis to aggregate and form vesicular, membrane-like structures. Vesicle formation with P. mirabilis lipopolysaccharide II containing longer O-polysaccharide chains was extremely poor. Lipopolysaccharides of Salmonella minnesota R mutants (chemotypes Ra, Rc and Re) displayed a growing tendency for vesicle formation with increasing deficiency of the R core polysaccharide. Lipopolysaccharides of chemotypes Rc and Re produced vesicles even in the absence of MgCl2 and detergent. Spherical aggregates consisting of P. mirabilis lipopolysaccharide I MgCl2 and detergent were unable to either entrap or retain [14C]-sucrose, [3H=inulin or [3H]dextran. On the other hand, S. minnesota R mutant lipopolysaccharides of chemotypes Rc and Re could entrap all three saccharides and retain them for at least short periods of time. Leakage of [3H]-inulin out of re-lipopolysaccharide vesicles was greatly retarded by addition of MgCl2 to the vesicle system. Incorporation of P. mirabilis lipopolysaccharide I or S. minnesota Rc lipopolysaccharide into phospholipid vesicles protected these model membranes from disruption by detergent. This suggested a similar protective function of lipopolysaccharide in the outer membrane of enteric bacteria against the action of surfactants occurring in their normal intestinal habitat. 10.1016/0005-2736(78)90132-3
The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Snyder D S,McIntosh T J Biochemistry Lipopolysaccharide (LPS), the primary lipid on the surface of Gram-negative bacteria, is thought to act as a permeability barrier, making the outer membrane relatively impermeable to hydrophobic antibiotics, detergents, and host proteins. Mutations in the LPS biosynthetic apparatus increase bacterial susceptibility to such agents. To determine how this increased susceptibility is mediated, we have correlated antibiotic susceptibilities of rough (antibiotic resistant) and deep rough (antibiotic susceptible) bacterial strains with antibiotic permeabilities and fluorescent probe binding kinetics for bilayers composed of LPS purified from the same strains. Bilayer permeabilities of two hydrophobic beta-lactam antibiotics were measured by encapsulating the appropriate beta-lactamases in large unilamellar vesicles. In the presence of MgCl(2), permeabilities of LPS bilayers from rough and deep rough bacteria were similar and significantly lower than those of bacterial phospholipids (BPL). Addition of BPL to the LPS bilayers increased their antibiotic permeability to approximately the level of the BPL bilayers. Binding rates of the fluorescent probe bis-aminonaphthylsulfonic acid (BANS) were 2 orders of magnitude slower for both rough and deep rough LPS bilayers compared to that of bilayers composed of BPL or mixtures of LPS and BPL. On the basis of these results and the observation that deep rough bacteria have higher levels of phospholipid on their surface than do rough bacteria (Kamio, Y., and Nikaido, H. (1976) Biochemistry 15, 2561-2569), we argue that the high susceptibility of deep rough bacteria is due to the presence of phospholipids on their surface. Experiments with phospholipid bilayers showed that the addition of PEG-lipids (containing covalently attached hydrophilic polymers) had little effect on permeability and binding rates, whereas the addition of cholesterol reduced permeability and slowed binding to levels approaching those of LPS. Therefore, we argue that the barrier provided by LPS is primarily due to its tight hydrocarbon chain packing (Snyder et al., (1999) Biochemistry 38, 10758-10767) rather than to its polysaccharide headgroup. 10.1021/bi000810n
Porphyromonas gingivalis outer membrane vesicles promote bacterial resistance to chlorhexidine. Grenier D,Bertrand J,Mayrand D Oral microbiology and immunology Porphyromonas gingivalis has been frequently associated with some types of periodontal diseases and possesses various mechanisms favoring the pathogenic process. It has been recently observed that vesicles elaborated by P. gingivalis are able to protect bacteria from the bactericidal activity of human serum. The aim of the present investigation was to evaluate the ability of vesicles from P. gingivalis in protecting oral bacteria against chlorhexidine. Data indicate that vesicles released by P. gingivalis may bind chlorhexidine, thus allowing protection for itself and for other oral bacterial species. It has also been demonstrated that lipopolysaccharides are the major component involved in the binding of chlorhexidine by vesicles. The mechanism of resistance reported in this study indicates that bacterial interactions in the oral cavity may influence the sensitivity of microbes. 10.1111/j.1399-302x.1995.tb00161.x
Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy. Wang Zhao,Ma Yufan,Khalil Hayssam,Wang Rutao,Lu Tingli,Zhao Wen,Zhang Yang,Chen Jamin,Chen Tao International journal of nanomedicine BACKGROUND:Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of bacteria to conventional antibiotics made it imperative to develop new liposome formulations for antibiotics, and investigate the fusion between liposome and bacterium. METHODS:In this study, the factors involved in fluid liposome interaction with bacteria have been investigated. We also demonstrated a mechanism of fusion between liposomes (1,2-dipa lmitoyl-sn-glycero-3-phosphocholine [DPPC]/dimyristoylphosphatidylglycerol [DMPG] 9:1, mol/mol) in a fluid state, and intact bacterial cells, by lipid mixing assay. RESULTS:The observed fusion process is shown to be mainly dependent on several key factors. Perturbation of liposome fluidity by addition of cholesterol dramatically decreased the degree of fusion with P. aeruginosa from 44% to 5%. It was observed that fusion between fluid liposomes and bacteria and also the bactericidal activities were strongly dependent upon the properties of the bacteria themselves. The level of fusion detected when fluid liposomes were mixed with Escherichia coli (66%) or P. aeruginosa (44%) seems to be correlated to their outer membrane phosphatidylethanolamine (PE) phospholipids composition (91% and 71%, respectively). Divalent cations increased the degree of fusion in the sequence Fe(2+) > Mg(2+) > Ca(2+) > Ba(2+) whereas temperatures lower than the phase transition temperature of DPPC/DMPG (9:1) vesicles decreased their fusion capacity. Acidic as well as basic pHs conferred higher degrees of fusion (54% and 45%, respectively) when compared to neutral pH (35%). CONCLUSION:Based on the results of this study, a possible mechanism involving cationic bridging between bacterial negatively charged lipopolysaccharide and fluid liposomes DMPG phospholipids was outlined. Furthermore, the fluid liposomal-encapsulated tobramycin was prepared, and the in vitro bactericidal effects were also investigated. 10.2147/IJN.S55807
Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Da Silva Gabriela Jorge,Domingues Sara Microorganisms Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen. 10.3390/microorganisms4030029
Technologies to address antimicrobial resistance. Baker Stephen J,Payne David J,Rappuoli Rino,De Gregorio Ennio Proceedings of the National Academy of Sciences of the United States of America Bacterial infections have been traditionally controlled by antibiotics and vaccines, and these approaches have greatly improved health and longevity. However, multiple stakeholders are declaring that the lack of new interventions is putting our ability to prevent and treat bacterial infections at risk. Vaccine and antibiotic approaches still have the potential to address this threat. Innovative vaccine technologies, such as reverse vaccinology, novel adjuvants, and rationally designed bacterial outer membrane vesicles, together with progress in polysaccharide conjugation and antigen design, have the potential to boost the development of vaccines targeting several classes of multidrug-resistant bacteria. Furthermore, new approaches to deliver small-molecule antibacterials into bacteria, such as hijacking active uptake pathways and potentiator approaches, along with a focus on alternative modalities, such as targeting host factors, blocking bacterial virulence factors, monoclonal antibodies, and microbiome interventions, all have potential. Both vaccines and antibacterial approaches are needed to tackle the global challenge of antimicrobial resistance (AMR), and both areas have the underpinning science to address this need. However, a concerted research agenda and rethinking of the value society puts on interventions that save lives, by preventing or treating life-threatening bacterial infections, are needed to bring these ideas to fruition. 10.1073/pnas.1717160115
Eradication of persister cells of Acinetobacter baumannii through combination of colistin and amikacin antibiotics. Chung Eun Seon,Ko Kwan Soo The Journal of antimicrobial chemotherapy OBJECTIVES:Persister cells following antibiotic exposure may cause failure of antibiotic treatment. The synergistic effects of antibiotic combinations with respect to eliminating persister cells were investigated based on their characteristics. METHODS:For Acinetobacter baumannii clinical isolates, persister assays were performed using colistin, amikacin, imipenem and ciprofloxacin in various ways, including exposure to antibiotics in combination and sequentially. Persister phenotypes were observed through analysis of ATP concentration, membrane potential and transmission electron microscopy. RESULTS:Each A. baumannii isolate showed a specific survival rate of persister cells against each antibiotic. The persister cells were eradicated effectively by exposure to the combination of colistin and amikacin, especially in the sequential order of colistin then amikacin. While the persister cells were not identified after 6 h when exposed to the antibiotics in the order colistin then amikacin, they remained at 0.016% when antibiotic exposure was done in the order amikacin then colistin. Although membrane potential was low in both colistin and amikacin persisters, depletion of the intracellular ATP concentration was only observed in colistin persisters. In addition, transmission electron microscopy analysis showed that colistin persisters have a unique morphology with a rough and rippled membrane and many outer membrane vesicles. Empty pore-like structures surrounded by cracks were also observed. CONCLUSIONS:In A. baumannii, the combination of colistin and amikacin was most effective for eradication of persister cells, probably due to different mechanisms of persister cell formation between antibiotics. It was also identified that the sequential order of colistin followed by amikacin was important to eradicate the persister cells. 10.1093/jac/dkz034
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Giordano Nicole P,Cian Melina B,Dalebroux Zachary D Infection and immunity The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation. 10.1128/IAI.00920-19
Lipidomic Analysis of the Outer Membrane Vesicles from Paired Polymyxin-Susceptible and -Resistant Clinical Isolates. International journal of molecular sciences Gram-negative bacteria produce outer membrane vesicles (OMVs) as delivery vehicles for nefarious bacterial cargo such as virulence factors, which are antibiotic resistance determinants. This study aimed to investigate the impact of polymyxin B treatment on the OMV lipidome from paired polymyxin-susceptible and -resistant isolates. ATCC 700721 was employed as a reference strain in addition to two clinical strains, FADDI-KP069 and BM3. Polymyxin B treatment of the polymyxin-susceptible strains resulted in a marked reduction in the glycerophospholipid, fatty acid, lysoglycerophosphate and sphingolipid content of their OMVs. Conversely, the polymyxin-resistant strains expressed OMVs richer in all of these lipid species, both intrinsically and increasingly under polymyxin treatment. The average diameter of the OMVs derived from the ATCC 700721 polymyxin-susceptible isolate, measured by dynamic light scattering measurements, was ~90.6 nm, whereas the average diameter of the OMVs isolated from the paired polymyxin-resistant isolate was ~141 nm. Polymyxin B treatment (2 mg/L) of the ATCC 700721 cells resulted in the production of OMVs with a larger average particle size in both the susceptible (average diameter ~124 nm) and resistant (average diameter ~154 nm) strains. In light of the above, we hypothesize that outer membrane remodelling associated with polymyxin resistance in may involve fortifying the membrane structure with increased glycerophospholipids, fatty acids, lysoglycerophosphates and sphingolipids. Putatively, these changes serve to make the outer membrane and OMVs more impervious to polymyxin attack. 10.3390/ijms19082356
Anti-outer Membrane Vesicle Antibodies Increase Antibiotic Sensitivity of Pan-Drug-Resistant . Huang Weiwei,Zhang Qishu,Li Weiran,Chen Yongjun,Shu Congyan,Li Qingrong,Zhou Jingxian,Ye Chao,Bai Hongmei,Sun Wenjia,Yang Xu,Ma Yanbing Frontiers in microbiology often causes serious nosocomial infections. Because of its serious drug resistance problems, complex drug resistance mechanism, and rapid adaptation to antibiotics, it often shows pan-drug resistance and high fatality rates, which represent great challenges for clinical treatment. Therefore, identifying new ways to overcome antibiotic resistance is particularly important. In this study, mice immunized with outer membrane vesicles (AbOMVs) produced high IgG levels for a long time, and this antiserum significantly increased the small molecule intracellular aggregation rate and concentrations. experiments demonstrated that the combined used of anti-AbOMV serum and quinolone antibiotics significantly increased the sensitivity of the bacteria to these antibiotics. Mouse sepsis model experiments demonstrated that delivery of these antibodies using both active and passive immunization strategies significantly improved the susceptibility to quinolone antibiotics, improved the survival rate of mice infected with , and reduced the bacterial load in the organs. In a pneumonia model, the combination of serum anti-AbOMVs and levofloxacin improved levofloxacin sensitivity, which significantly reduced the bacterial loads in the lung and spleen compared with those of the antibiotic or antibody alone. This combination also significantly reduced lung inflammatory cell infiltration and inflammatory cytokine aggregation. In this study, the main protein targets that bound to these antibodies were identified. Structural modeling showed that seven of the proteins were porins. Therefore, we speculated that the anti-AbOMV antibodies mainly improved the intracellular aggregation of antibiotics by affecting porins, thus improving susceptibility to quinolone antibiotics. This study provides a method to improve susceptibility to existing antibiotics and a novel idea for the prevention and treatment of pan-drug-resistant . 10.3389/fmicb.2019.01379
Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. Olaya-Abril Alfonso,Prados-Rosales Rafael,McConnell Michael J,Martín-Peña Reyes,González-Reyes José Antonio,Jiménez-Munguía Irene,Gómez-Gascón Lidia,Fernández Javier,Luque-García José L,García-Lidón Carlos,Estévez Héctor,Pachón Jerónimo,Obando Ignacio,Casadevall Arturo,Pirofski Liise-Anne,Rodríguez-Ortega Manuel J Journal of proteomics Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. BIOLOGICAL SIGNIFICANCE:Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection in immunized mice against infection with a virulent strain. This work will contribute to understand the role of these structures in important biological processes such as host-pathogen interactions and prevention of human disease. 10.1016/j.jprot.2014.04.023
Cell-Free DNA: An Underestimated Source of Antibiotic Resistance Gene Dissemination at the Interface Between Human Activities and Downstream Environments in the Context of Wastewater Reuse. Frontiers in microbiology The dissemination of antimicrobial resistance (AMR) is one of the biggest challenges faced by mankind in the public health domains. It is currently favored by a lack of confinement between waste disposal and food production in the environmental compartment. To date, much effort has been devoted into the elucidation and control of cell-associated propagation of AMR. However, substantial knowledge gaps remain on the contribution of cell-free DNA to promote horizontal transfers of resistance genes in wastewater and downstream environments. Cell free DNA, which covers free extracellular DNA (exDNA) as well as DNA encapsulated in vesicles or bacteriophages, can persist after disinfection and promote gene transfer in the absence of physical and temporal contact between a donor and recipient bacteria. The increasing water scarcity associated to climatic change requires developing innovative wastewater reuse practices and, concomitantly, a robust evaluation of AMR occurrence by implementing treatment technologies able to exert a stringent control on AMR propagation in downstream environments exposed to treated or non-treated wastewater. This necessarily implies understanding the fate of ARGs on various forms of cell-free DNA, especially during treatment processes that are permissive to their formation. We propose that comprehensive approaches, investigating both the occurrence of ARGs and their compartmentalization in different forms of cellular or cell-free associated DNA should be established for each treatment technology. This should then allow selecting and tuning technologies for their capacity to limit the propagation of ARGs in any of their forms. 10.3389/fmicb.2020.00671
Integrative analysis of outer membrane vesicles proteomics and whole-cell transcriptome analysis of eravacycline induced Acinetobacter baumannii strains. Kesavan DineshKumar,Vasudevan Aparna,Wu Liang,Chen Jianguo,Su Zhaoliang,Wang Shengjun,Xu Huaxi BMC microbiology BACKGROUND:Acinetobacter baumannii is a multidrug-resistant (MDR) hazardous bacterium with very high antimicrobial resistance profiles. Outer membrane vesicles (OMVs) help directly and/or indirectly towards antibiotic resistance in these organisms. The present study aims to look on the proteomic profile of OMV as well as on the bacterial transcriptome upon exposure and induction with eravacycline, a new synthetic fluorocycline. RNA sequencing analysis of whole-cell and LC-MS/MS proteomic profiling of OMV proteome abundance were done to identify the differential expression among the eravacycline-induced A. baumannii ATCC 19606 and A. baumannii clinical strain JU0126. RESULTS:The differentially expressed genes from the RNA sequencing were analysed using R package and bioinformatics software and tools. Genes encoding drug efflux and membrane transport were upregulated among the DEGs from both ATCC 19606 and JU0126 strains. As evident with the induction of eravacycline resistance, ribosomal proteins were upregulated in both the strains in the transcriptome profiles and also resistance pumps, such as MFS, RND, MATE and ABC transporters. High expression of stress and survival proteins were predominant in the OMVs proteome with ribosomal proteins, chaperons, OMPs OmpA, Omp38 upregulated in ATCC 19606 strain and ribosomal proteins, toluene tolerance protein, siderophore receptor and peptidases in the JU0126 strain. The induction of resistance to eravacycline was supported by the presence of upregulation of ribosomal proteins, resistance-conferring factors and stress proteins in both the strains of A. baumannii ATCC 19606 and JU0126, with the whole-cell gene transcriptome towards both resistance and stress genes while the OMVs proteome enriched more with survival proteins. CONCLUSION:The induction of resistance to eravacycline in the strains were evident with the increased expression of ribosomal and transcription related genes/proteins. Apart from this resistance-conferring efflux pumps, outer membrane proteins and stress-related proteins were also an essential part of the upregulated DEGs. However, the expression profiles of OMVs proteome in the study was independent with respect to the whole-cell RNA expression profiles with low to no correlation. This indicates the possible role of OMVs to be more of back-up additional protection to the existing bacterial cell defence during the antibacterial stress. 10.1186/s12866-020-1722-1
Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Schaar Viveka,Nordström Therése,Mörgelin Matthias,Riesbeck Kristian Antimicrobial agents and chemotherapy Moraxella catarrhalis is a common pathogen found in children with upper respiratory tract infections and in patients with chronic obstructive pulmonary disease during exacerbations. The bacterial species is often isolated together with Streptococcus pneumoniae and Haemophilus influenzae. Outer membrane vesicles (OMVs) are released by M. catarrhalis and contain phospholipids, adhesins, and immunomodulatory compounds such as lipooligosaccharide. We have recently shown that M. catarrhalis OMVs exist in patients upon nasopharyngeal colonization. As virtually all M. catarrhalis isolates are β-lactamase positive, the goal of this study was to investigate whether M. catarrhalis OMVs carry β-lactamase and to analyze if OMV consequently can prevent amoxicillin-induced killing. Recombinant β-lactamase was produced and antibodies were raised in rabbits. Transmission electron microscopy, flow cytometry, and Western blotting verified that OMVs carried β-lactamase. Moreover, enzyme assays revealed that M. catarrhalis OMVs contained active β-lactamase. OMVs (25 μg/ml) incubated with amoxicillin for 1 h completely hydrolyzed amoxicillin at concentrations up to 2.5 μg/ml. In functional experiments, preincubation of amoxicillin (10× MIC) with M. catarrhalis OMVs fully rescued amoxicillin-susceptible M. catarrhalis, S. pneumoniae, and type b or nontypeable H. influenzae from β-lactam-induced killing. Our results suggest that the presence of amoxicillin-resistant M. catarrhalis originating from β-lactamase-containing OMVs may pave the way for respiratory pathogens that by definition are susceptible to β-lactam antibiotics. 10.1128/AAC.01772-10
Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing β-lactamase derived from Haemophilus influenzae. Schaar Viveka,Uddbäck Ida,Nordström Therese,Riesbeck Kristian The Journal of antimicrobial chemotherapy OBJECTIVES:Group A streptococci (GAS) cause, among other infections, pharyngotonsillitis in children. The species is frequently localized with the Gram-negative respiratory pathogens non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis, which both produce outer membrane vesicles (OMVs). The aim of this study was to investigate whether OMVs isolated from NTHi contain functional β-lactamase and whether the OMVs hydrolyse amoxicillin and thus protect GAS from killing by the antibiotic. METHODS:The antibiotic susceptibility of isolates was determined using the Etest. The resistance genes blaTEM-1 (encoding NTHi β-lactamase), bro-1 (encoding M. catarrhalis β-lactamase) and ftsI (encoding NTHi penicillin-binding protein 3) were searched for by PCR, followed by sequencing. OMVs were isolated by ultracentrifugation and the presence of β-lactamase was detected by western blots including specific rabbit polyclonal antibodies. The chromogenic substrate nitrocefin was used to quantify and compare the β-lactamase enzyme activity in the OMVs. The hydrolysis of amoxicillin by β-lactamase was estimated by an agar diffusion method. RESULTS:We showed that OMVs released from β-lactam-resistant M. catarrhalis and NTHi contain functional β-lactamase that hydrolyses amoxicillin and protects GAS from killing by amoxicillin. CONCLUSIONS:This is the first report of the presence of β-lactamase in NTHi OMVs. We suggest that OMV-derived β-lactamase from coinfecting pathogens such as NTHi and M. catarrhalis may contribute to the occasional treatment failures seen in GAS tonsillitis. 10.1093/jac/dkt307
YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide. Guest Randi L,Samé Guerra Daniel,Wissler Maria,Grimm Jacqueline,Silhavy Thomas J mBio Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In , this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that is epistatic to , demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting , which codes for a highly abundant OM lipoprotein. It was assumed that deletion of restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport. 10.1128/mBio.00598-20
Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment. Frontiers in cellular and infection microbiology Outer membrane and membrane vesicles (OMV/MV) are released from bacteria and participate in cell communication, biofilm formation and host-pathogen interactions. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that catalyze post-translational deimination/citrullination of proteins, causing structural and functional changes in target proteins. PADs also play major roles in the regulation of eukaryotic extracellular vesicle release. Here we show phylogenetically conserved pathways of PAD-mediated OMV/MV release in bacteria and describe deiminated/citrullinated proteins in and their derived OMV/MVs. Furthermore, we show that PAD inhibitors can be used to effectively reduce OMV/MV release, both in Gram-negative and Gram-positive bacteria. Importantly, this resulted in enhanced antibiotic sensitivity of both and to a range of antibiotics tested. Our findings reveal novel strategies for applying pharmacological OMV/MV-inhibition to reduce antibiotic resistance. 10.3389/fcimb.2019.00227
Cannabidiol Is a Novel Modulator of Bacterial Membrane Vesicles. Frontiers in cellular and infection microbiology Membrane vesicles (MVs) released from bacteria participate in cell communication and host-pathogen interactions. Roles for MVs in antibiotic resistance are gaining increased attention and in this study we investigated if known anti-bacterial effects of cannabidiol (CBD), a phytocannabinoid from , could be in part attributed to effects on bacterial MV profile and MV release. We found that CBD is a strong inhibitor of MV release from Gram-negative bacteria ( VCS257), while inhibitory effect on MV release from Gram-positive bacteria ( subsp Rosenbach) was negligible. When used in combination with selected antibiotics, CBD significantly increased the bactericidal action of several antibiotics in the Gram-negative bacteria. In addition, CBD increased antibiotic effects of kanamycin in the Gram-positive bacteria, without affecting MV release. CBD furthermore changed protein profiles of MVs released from after 1 h CBD treatment. Our findings indicate that CBD may pose as a putative adjuvant agent for tailored co-application with selected antibiotics, depending on bacterial species, to increase antibiotic activity, including via MV inhibition, and help reduce antibiotic resistance. 10.3389/fcimb.2019.00324
Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa. Baek Mi Suk,Chung Eun Seon,Jung Dong Sik,Ko Kwan Soo The Journal of antimicrobial chemotherapy OBJECTIVES:Persister cells are responsible for antibiotic treatment failure and the emergence of antibiotic resistance. The synergistic lethal effects of antibiotic combinations on persister cells were investigated using Pseudomonas aeruginosa isolates. METHODS:Persister assays were performed on P. aeruginosa clinical isolates using colistin, amikacin, ciprofloxacin and cefepime, individually and in combination. ATP concentrations were measured and morphological changes in persister cells were observed using transmission electron microscopy (TEM). The expression of relA, spoT and obg genes was evaluated and persister-cell formation was investigated in a relA and spoT double mutant (ΔrelAΔspoT). RESULTS:The P. aeruginosa persister cells were eradicated upon exposure to the colistin-based antibiotic combination colistin + ciprofloxacin. Simultaneous treatment with both antibiotics, rather than sequential treatment, caused more effective eradication. The intracellular ATP concentration was most reduced in colistin persisters. While the spoT gene was only overexpressed in colistin-persister cells, the relA gene was overexpressed in all persister cells compared with untreated parent cells. TEM analysis suggested the possibility that persister cells might be formed by different mechanisms depending on the antibiotic. Cell elongation and cell wall or membrane damage in colistin persisters, DNA condensation in amikacin persisters and outer membrane vesicles in ciprofloxacin persisters were identified. CONCLUSIONS:In P. aeruginosa, the colistin-based antibiotic combination (colistin + ciprofloxacin) was effective for the eradication of persister cells, probably due to the different persister cell-formation mechanisms between the two antibiotics. Simultaneous, rather than sequential, treatment with two antibiotics could be more effective for eradicating persister P. aeruginosa cells. 10.1093/jac/dkz552
The Importance of Porins and β-Lactamase in Outer Membrane Vesicles on the Hydrolysis of β-Lactam Antibiotics. Kim Si Won,Lee Jung Seok,Park Seong Bin,Lee Ae Rin,Jung Jae Wook,Chun Jin Hong,Lazarte Jassy Mary S,Kim Jaesung,Seo Jong-Su,Kim Jong-Hwan,Song Jong-Wook,Ha Min Woo,Thompson Kim D,Lee Chang-Ro,Jung Myunghwan,Jung Tae Sung International journal of molecular sciences Gram-negative bacteria have an outer membrane inhibiting the entry of antibiotics. Porins, found within the outer membrane, are involved in regulating the permeability of β-lactam antibiotics. β-lactamases are enzymes that are able to inactivate the antibacterial properties of β-lactam antibiotics. Interestingly, porins and β-lactamase are found in outer membrane vesicles (OMVs) of β-lactam-resistant and may be involved in the survival of susceptible strains of in the presence of antibiotics, through the hydrolysis of the β-lactam antibiotic. In this study, OMVs isolated from β-lactam-resistant and from mutants, lacking porin or β-lactamase, were evaluated to establish if the porins or β-lactamase in OMVs were involved in the degradation of β-lactam antibiotics. OMVs isolated from deficient in β-lactamase did not show any degradation ability against β-lactam antibiotics, while OMVs lacking OmpC or OmpF showed significantly lower levels of hydrolyzing activity than OMVs from parent . These data reveal an important role of OMVs in bacterial defense mechanisms demonstrating that the OmpC and OmpF proteins allow permeation of β-lactam antibiotics into the lumen of OMVs, and antibiotics that enter the OMVs can be degraded by β-lactamase. 10.3390/ijms21082822
The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Uddin Md Jalal,Dawan Jirapat,Jeon Gibeom,Yu Tao,He Xinlong,Ahn Juhee Microorganisms The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions. 10.3390/microorganisms8050670
Protective effects of membrane vesicles against stress and antimicrobial agents. Microbiology (Reading, England) Outer-membrane vesicles (OMVs) produced by deliver bacterial components to host cells, provide a mechanism for stabilization of secreted components and may allow the bacteria to exert 'long-range' effects in the gastric niche, promoting persistence. In addition to their well-characterized host cell interactions, membrane vesicles improve stress survival in other bacterial species, and are constitutively produced by both pathogenic and non-pathogenic bacteria. We aimed to determine whether OMVs could improve survival of a range of stressors. The effects of purified OMVs on the resistance of to a range of environmental and antimicrobial stresses were determined using growth curves and survival assays. Addition of purified OMVs to cultures provided dose-dependent protection against hydrogen peroxide-mediated killing. Supplementation with OMVs also partially protected against the bactericidal effects of the antibiotics clarithromycin and levofloxacin, but not against amoxicillin nor metronidazole. Addition of purified OMVs allowed to grow in the presence of inhibitory concentrations of the antimicrobial peptide LL-37. In the presence of 50 µg OMVs ml, significantly enhanced growth was observed at higher LL-37 concentrations compared with lower LL-37 concentrations, suggesting that OMV-LL-37 interactions might facilitate release of growth-promoting nutrients. Taken together, these data indicate that production of membrane vesicles could help to survive exposure to antibiotics and host antimicrobial defences during infection. 10.1099/mic.0.000934
Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. Bielaszewska Martina,Daniel Ondřej,Karch Helge,Mellmann Alexander The Journal of antimicrobial chemotherapy BACKGROUND:Bacterial outer membrane vesicles (OMVs) are an emerging source of antibiotic resistance transfer but their role in the spread of the blaCTX-M-15 gene encoding the most frequent CTX-M ESBL in Enterobacteriaceae is unknown. OBJECTIVES:To determine the presence of blaCTX-M-15 and other antibiotic resistance genes in OMVs of the CTX-M-15-producing MDR Escherichia coli O104:H4 outbreak strain and the ability of these OMVs to spread these genes among Enterobacteriaceae under different conditions. METHODS:OMV-borne antibiotic resistance genes were detected by PCR; OMV-mediated transfer of blaCTX-M-15 and the associated blaTEM-1 was quantified under laboratory conditions, simulated intraintestinal conditions and under ciprofloxacin stress; resistance to antibiotics and the ESBL phenotype were determined by the CLSI disc diffusion methods and the presence of pESBL by plasmid profiling and Southern blot hybridization. RESULTS:E. coli O104:H4 OMVs carried blaCTX-M-15 and blaTEM-1 located on the pESBL plasmid, but not chromosomal antibiotic resistance genes. The OMVs transferred blaCTX-M-15, blaTEM-1 and the associated pESBL into Enterobacteriaceae of different species. The frequencies of the OMV-mediated transfer were significantly increased under simulated intraintestinal conditions and under ciprofloxacin stress when compared with laboratory conditions. The 'vesiculants' (i.e. recipients that received the blaCTX-M-15- and blaTEM-1-harbouring pESBL via OMVs) acquired resistance to cefotaxime, ceftazidime and cefpodoxime and expressed the ESBL phenotype. They were able to further spread pESBL and the blaCTX-M-15 and blaTEM-1 genes via OMVs. CONCLUSIONS:OMVs are efficient vehicles for dissemination of the blaCTX-M-15 gene among Enterobacteriaceae and may contribute to blaCTX-M-15 transfer in the human intestine. 10.1093/jac/dkaa214
Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure. Science advances Membrane vesicles are ubiquitous carriers of molecular information. A broad understanding of the biological functions of membrane vesicles in bacteria remains elusive because of the imaging challenges during real-time in vivo experiments. Here, we provide a quantitative analysis of the motion of individual vesicles in living microbes using fluorescence microscopy, and we show that while vesicle free diffusion in the intercellular space is rare, vesicles mostly disperse along the bacterial surfaces. Most remarkably, when bacteria are challenged with low doses of antibiotics, vesicle production and traffic, quantified by instantaneous vesicle speeds and total traveled distance per unit time, are significantly enhanced. Furthermore, the enhanced vesicle movement is independent of cell clustering properties but rather is associated with a reduction of the density of surface appendages in response to antibiotics. Together, our results provide insights into the emerging field of spatial organization and dynamics of membrane vesicles in microcolonies. 10.1126/sciadv.abd1033
Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nature chemical biology Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies. 10.1038/nchembio.2083
Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. Huang Weiwei,Zhang Qishu,Li Weiran,Yuan Mingcui,Zhou Jingxian,Hua Liangqun,Chen Yongjun,Ye Chao,Ma Yanbing Journal of controlled release : official journal of the Controlled Release Society Conventionally used antibiotics are present in low concentrations at the infection site and require multiple administrations to sustain a continuous bactericidal effect, which not only increases their systemic toxicity but also results in bacterial drug resistance. In this study, we first identified an interesting drug resistance mechanism mediated by bacterial outer membrane vesicles (OMVs) and then designed novel antibiotic-loaded OMVs using this mechanism. We show that these antibiotic-loaded OMVs can effectively enter and kill pathogenic bacteria in vitro. In a mouse model of intestinal bacterial infection, one low-dose oral administration of antibiotic-loaded OMVs showed that the drug was retained in the intestine for 36 h, and no systemic spread was detected 12 h after drug administration. The antibiotic-loaded OMVs significantly reduced the bacterial load in the small intestine and feces of infected mice. Safety experiments confirmed that the antibiotic-loaded OMVs had excellent biocompatibility. This study extends the application range of OMVs and provides new ideas for the development of antibacterial drugs. 10.1016/j.jconrel.2019.11.017
Proteomics in gram-negative bacterial outer membrane vesicles. Lee Eun-Young,Choi Dong-Sic,Kim Kwang-Pyo,Gho Yong Song Mass spectrometry reviews Gram-negative bacteria constitutively secrete outer membrane vesicles (OMVs) into the extracellular milieu. Recent research in this area has revealed that OMVs may act as intercellular communicasomes in polyspecies communities by enhancing bacterial survival and pathogenesis in hosts. However, the mechanisms of vesicle formation and the pathophysiological roles of OMVs have not been clearly defined. While it is obvious that mass spectrometry-based proteomics offers great opportunities for improving our knowledge of bacterial OMVs, limited proteomic data are available for OMVs. The present review aims to give an overview of the previous biochemical, biological, and proteomic studies in the emerging field of bacterial OMVs, and to give future directions for high-throughput and comparative proteomic studies of OMVs that originate from diverse Gram-negative bacteria under various environmental conditions. This article will hopefully stimulate further efforts to construct a comprehensive proteome database of bacterial OMVs that will help us not only to elucidate the biogenesis and functions of OMVs but also to develop diagnostic tools, vaccines, and antibiotics effective against pathogenic bacteria. 10.1002/mas.20175
Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. Schulz Eilien,Goes Adriely,Garcia Ronald,Panter Fabian,Koch Marcus,Müller Rolf,Fuhrmann Kathrin,Fuhrmann Gregor Journal of controlled release : official journal of the Controlled Release Society Up to 25,000 people die each year from resistant infections in Europe alone, with increasing incidence. It is estimated that a continued rise in bacterial resistance by 2050 would lead up to 10 million annual deaths worldwide, exceeding the incidence of cancer deaths. Although the design of new antibiotics is still one way to tackle the problem, pharmaceutical companies investigate far less into new drugs than 30 years ago. Incorporation of antibiotics into nanoparticle drug carriers ("nanoantibiotics") is currently investigated as a promising strategy to make existing antibiotics regain antimicrobial strength and overcome certain types of microbial drug resistance. Many of these synthetic systems enhance the antimicrobial effect of drugs by protecting antibiotics from degradation and reducing their side effects. Nevertheless, they often cannot selectively target pathogenic bacteria and - due to their synthetic origin - may induce side-effects themselves. In this work, we present the characterisation of naturally derived outer membrane vesicles (OMVs) as biocompatible and inherently antibiotic drug carriers. We isolated OMVs from two representative strains of myxobacteria, Cystobacter velatus Cbv34 and Sorangiineae species strain SBSr073, a bacterial order with the ability of lysing other bacterial strains and currently investigated as sources of new secondary metabolites. We investigated the myxobacterias' inherent antibacterial properties after isolation by differential centrifugation and purification by size-exclusion chromatography. OMVs have an average size range of 145-194 nm. We characterised their morphology by electron cryomicroscopy and found that OMVs are biocompatible with epithelial cells and differentiated macrophages. They showed a low endotoxin activity comparable to those of control samples, indicating a low acute inflammatory potential. In addition, OMVs showed inherent stability under different storage conditions, including 4 °C, -20 °C, -80 °C and freeze-drying. OMV uptake in Gram-negative model bacterium Escherichia coli (E. coli) showed similar to better incorporation than liposome controls, indicating the OMVs may interact with model bacteria via membrane fusion. Bacterial uptake correlated with antimicrobial activity of OMVs as measured by growth inhibition of E. coli. OMVs from Cbv34 inhibited growth of E. coli to a comparable extent as the clinically established antibiotic gentamicin. Liquid-chromatography coupled mass spectrometry analyses revealed the presence of cystobactamids in OMVs, inhibitors of bacterial topoisomerase currently studied to treat different Gram-negative and Gram-positive pathogens. This work, may serve as an important basis for further evaluation of OMVs derived from myxobacteria as novel therapeutic delivery systems against bacterial infections. 10.1016/j.jconrel.2018.09.030
Protective role of E. coli outer membrane vesicles against antibiotics. Kulkarni Heramb M,Nagaraj R,Jagannadham Medicharla V Microbiological research The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics. 10.1016/j.micres.2015.07.008
Contribution of bacterial outer membrane vesicles to innate bacterial defense. Manning Andrew J,Kuehn Meta J BMC microbiology BACKGROUND:Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria throughout growth and have proposed roles in virulence, inflammation, and the response to envelope stress. Here we investigate outer membrane vesiculation as a bacterial mechanism for immediate short-term protection against outer membrane acting stressors. Antimicrobial peptides as well as bacteriophage were used to examine the effectiveness of OMV protection. RESULTS:We found that a hyper-vesiculating mutant of Escherichia coli survived treatment by antimicrobial peptides (AMPs) polymyxin B and colistin better than the wild-type. Supplementation of E. coli cultures with purified outer membrane vesicles provided substantial protection against AMPs, and AMPs significantly induced vesiculation. Vesicle-mediated protection and induction of vesiculation were also observed for a human pathogen, enterotoxigenic E. coli (ETEC), challenged with polymyxin B. When ETEC with was incubated with low concentrations of vesicles concomitant with polymyxin B treatment, bacterial survival increased immediately, and the culture gained resistance to polymyxin B. By contrast, high levels of vesicles also provided immediate protection but prevented acquisition of resistance. Co-incubation of T4 bacteriophage and OMVs showed fast, irreversible binding. The efficiency of T4 infection was significantly reduced by the formation of complexes with the OMVs. CONCLUSIONS:These data reveal a role for OMVs in contributing to innate bacterial defense by adsorption of antimicrobial peptides and bacteriophage. Given the increase in vesiculation in response to the antimicrobial peptides, and loss in efficiency of infection with the T4-OMV complex, we conclude that OMV production may be an important factor in neutralizing environmental agents that target the outer membrane of Gram-negative bacteria. 10.1186/1471-2180-11-258