logo logo
Co-pelletization of sewage sludge and agricultural wastes. Yilmaz Ersel,Wzorek Małgorzata,Akçay Selin Journal of environmental management This paper concerns the process of production and properties of pellets based on biomass wastes. Co-pelletization was performed for sewage sludge from municipal wastewater treatment plant and other biomass material such as animal and olive wastes. The aim of the present study was to identify the key factors affecting on the sewage sludge and agricultural residues co-pelletization processes conditions. The impact of raw material type, pellet length, moisture content and particle size on the physical properties was investigated. The technic and technological aspects of co-pelletization were discussed in detail. The physical parameters of pellets, i.e.: drop strength, absorbability and water resistance were determined. Among others, also energy parameters: low and high heat value, content of ash and volatiles were presented. Results showed the range of raw materials moisture, which is necessary to obtain good quality biofuels and also ratio of sewage sludge in pelletizing materials. The analysis of the energetic properties has indicated that the pellet generated on the basis of the sewage sludge and another biomass materials can be applied in the processes of co-combustion with coal. Those biofuels are characterised with properties making them suitable for use in thermal processes and enabling their transport and storage. 10.1016/j.jenvman.2017.09.012
Co-pelletization of sewage sludge and biomass: the density and hardness of pellet. Jiang Longbo,Liang Jie,Yuan Xingzhong,Li Hui,Li Changzhu,Xiao Zhihua,Huang Huajun,Wang Hou,Zeng Guangming Bioresource technology In the present study, the effects of process parameters on pellet properties were investigated for the co-pelletization of sludge and biomass materials. The relaxed pellet density and Meyer hardness of pellets were identified. Scanning electron microscopy, FT-IR spectra and chemical analysis were conducted to investigate the mechanisms of inter-particular adhesion bonding. Thermogravimetric analysis was applied to investigate the combustion characteristics. Results showed that the pellet density was increased with the parameters increasing, such as pressure, sludge ratio and temperature. High hardness pellets could be obtained at low pressure, temperature and biomass size. The optimal moisture content for co-pelletization was 10-15%. Moreover, the addition of sludge can reduce the diversity of pellet hardness caused by the heterogeneity of biomass. Increasing ratio of sludge in the pellet would slow down the release of volatile. Synergistic effects of protein and lignin can be the mechanism in the co-pelletization of sludge and biomass. 10.1016/j.biortech.2014.05.077