logo logo
Chitosan oligosaccharide promotes osteoclast formation by stimulating the activation of MAPK and AKT signaling pathways. Bai Bing-Li,Xie Zhong-Jie,Weng She-Ji,Wu Zong-Yi,Li Hang,Tao Zhou-Shan,Boodhun Viraj,Yan De-Yi,Shen Zi-Jian,Tang Jia-Hao,Yang Lei Journal of biomaterials science. Polymer edition Chitosan Oligosaccharide (COS) has been widely used for the systemic treatment of clinical diseases such as bone tissue engineering. However, its influence on osteoclast formation, which plays a critical role in bone homeostasis, has never been investigated. The aim of this study was to investigate the effect of chitosan oligosaccharide on differentiation of osteoclast. Using cell counting kit-8, tartrate-resistant acid phosphatase staining, reverse transcription‑quantitative polymerase chain reaction assay and western blot analysis, we demonstrated that chitosan oligosaccharide cannot inhibit RANKL-induced osteoclast precursor proliferation but does promote osteoclast differentiation by stimulating the activation of p38/mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK)/MAPK, extracellular signal-regulated kinase (ERK)/MAPK and protein kinase B (AKT) without affecting nuclear factor kappaB (NF-kB) signaling pathways. Based on the promoting effect of chitosan oligosaccharide on osteoclast differentiation, we suggest that this property of chitosan oligosaccharide may have potential detrimental effect on bone homeostasis. 10.1080/09205063.2018.1448336
β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway. Wang Feng,Wang Nan,Gao Youshui,Zhou Zubin,Liu Wei,Pan Chenhao,Yin Peipei,Yu Xiaowei,Tang Mingjie Life sciences AIMS:β-Carotene is a natural anti-oxidant, which has been used for treatment of cancer and cardiovascular diseases. Recently, the ameliorating function of β-carotene in osteoporosis has been implicated. However, the precise mechanism of β-carotene in prevention and treatment of osteoporosis is largely unknown. In the present study, we aimed to elucidate how β-carotene affects osteoclast formation and bone resorption. MAIN METHODS:Bone marrow-derived monocytes/-macrophages (BMM) were exposed to 0.05, 0.1, 0.2, 0.4 and 0.6μM β-carotene, followed by evaluation of cell viability, lactate dehydrogenase (LDH) release, receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and resorption pits formation. Key factors in nuclear factor kappa B (NF-ĸB) and mitogen-activated protein kinases (MAPK) pathways were evaluated with western blot after BMM cells were exposed to RANKL and β-carotene. The effects of β-carotene in nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos and cathepsin K (CTSK) expression were also evaluated. KEY FINDINGS:β-Carotene significantly inhibited BMM viability and promoted LDH release at concentrations of 0.4 and 0.6μM. A decrease in RANKL-induced osteoclastogenesis and resorption was also observed after β-carotene treatment. β-Carotene attenuated the NF-ĸB pathway activation by RANKL, with no effect on MAPK pathway. β-Carotene suppressed the upregulation of NFATc1 and c-Fos by RANKL. SIGNIFICANCE:We clarified the anti-osteoclastogenic role of β-carotene, which is mediated by NF-κB signaling. 10.1016/j.lfs.2017.03.002
Inhibition of RANKL-stimulated osteoclast differentiation by Schisandra chinensis through down-regulation of NFATc1 and c-fos expression. Kim Eun-Jung,Lee Haesu,Kim Mi Hye,Yang Woong Mo BMC complementary and alternative medicine BACKGROUND:Schisandra chinenesis (SC) has been reported to have ameliorative effect on osteoporosis. However, the mechanisms underlying the anti-osteoporosis activity of SC have not been clearly elucidated. In the present study, we determined the effects of SC on The receptor activator of NF-kB ligand (RANKL)-induced osteoclastogenesis and its potential mechanism. METHODS:Raw 264.7 cells were treated with 0.6, 6 and 60 μg/mL SC in the presence of 100 ng/mL RANKL for 7 days. RANKL-induced osteoclast formation was analyzed by tartrate resistant acid phosphatase (TRAP) staining. The osteoclast differentiation-related factors were confirmed along with TNF-α. RESULTS:SC inhibits the RANKL-induced osteoclast differentiation in dose-dependent manner within non-toxic concentrations. The supernatant concentrations of TNF-α were significantly decreased by SC treatment. In addition, osteoclastogenesis-related factors, TRAP6 and NF-κB, were markedly decreased by SC in RANKL-induced osteoclasts. Mechanistically, SC reduced the RANKL-triggered NFATc1 and c-fos expressions. CONCLUSIONS:Taken together, our data suggest that SC can modulate bone metabolism by suppressing RANKL-induced osteoclast differentiation. 10.1186/s12906-018-2331-5
Abietic acid attenuates RANKL induced osteoclastogenesis and inflammation associated osteolysis by inhibiting the NF-KB and MAPK signaling. Thummuri Dinesh,Guntuku Lalita,Challa Veerabhadra Swamy,Ramavat Ravinder Naik,Naidu Vegi Ganga Modi Journal of cellular physiology Osteoporosis is a major debilitating cause of fractures and decreases the quality of life in elderly patients. Bone homeostasis is maintained by bone forming osteoblasts and bone resorpting osteoclasts. Substantial evidences have shown that targeting osteoclasts using natural products is a promising strategy for the treatment of osteoporosis. In the current study, we investigated the osteoprotective effect of Abietic acid (AA) in in vitro and in vivo models of osteolysis. In vitro experiments demonstrated that, AA suppressed receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and F-actin ring formation in a concentration dependent manner. Mechanistically, AA abrogated RANKL-induced phosphorylation of IKKα/β (ser 176/180), IkBα (ser 32), and inhibited the nuclear translocation of NF-κB. We also found that, AA attenuated the RANKL-induced phosphorylation of MAPKs and decreased the expression of osteoclast specific genes such as TRAP, DC-STAMP, c-Fos, and NFATc1. Consistent with in vitro results, in vivo Lipoploysaccharide (LPS)-induced osteolysis model showed that AA inhibited the LPS-induced serum surge in cytokines TNF-α and IL-6. μ-CT analysis showed that AA prevented the LPS-induced osteolysis. Furthermore, histopathology and TRAP staining results suggested that AA decreased the number of osteoclasts in LPS-injected mice. Taken together, we demonstrated that the osteoprotective action of AA is coupled with the inhibition of NF-κB and MAPK signaling and subsequent inhibition of NFATc1 and c-Fos activities. Hence, AA may be considered as a promising drug candidate for the treatment of osteoporosis. 10.1002/jcp.26575
Crosstalk between Fas and S1P signaling via NF-kB in osteoclasts controls bone destruction in the TMJ due to rheumatoid arthritis. Hutami Islamy Rahma,Tanaka Eiji,Izawa Takashi The Japanese dental science review Rheumatoid arthritis (RA) mainly affects various joints of the body, including the temporomandibular joint (TMJ), and it involves an infiltration of autoantibodies and inflammatory leukocytes into articular tissues and the synovium. Initially, the synovial lining tissue becomes engaged with several kinds of infiltrating cells, including osteoclasts, macrophages, lymphocytes, and plasma cells. Eventually, bone degradation occurs. In order to elucidate the best therapy for RA, a comprehensive study of RA pathogenesis needs to be completed. In this article, we discuss a Fas-deficient condition which develops into RA, with an emphasis on the role of sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling which induces the migration of osteoclast precursor cells. We describe that Fas/S1P signaling via NF-κB activation in osteoclasts is a key factor in TMJ-RA severity and we discuss a strategy for blocking nuclear translocation of the p50 NF-κB subunit as a potential therapy for attenuating osteoclastogenesis. 10.1016/j.jdsr.2018.09.004
A two-herb formula inhibits osteoclastogenesis and suppresses NF-kB and MAPK pathways. Chen Ying-Jie,Bai Lu,Wu Jia-Ying,Liu Yu-Xi,Fu Xiu-Qiong,Zhu Pei-Li,Li Jun-Kui,Yin Cheng-Le,Chou Ji-Yao,Wang Ya-Ping,Wu Ying,Bai Jing-Xuan,Yu Zhi-Ling Journal of ethnopharmacology 10.1016/j.jep.2020.112625
Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. Molstad David H H,Mattson Anna M,Begun Dana L,Westendorf Jennifer J,Bradley Elizabeth W The Journal of biological chemistry Hdac3 is a lysine deacetylase that removes acetyl groups from histones and additional proteins. Although Hdac3 functions within mesenchymal lineage skeletal cells are defined, little is known about Hdac3 activities in bone-resorbing osteoclasts. In this study we conditionally deleted Hdac3 within Ctsk-expressing cells and examined the effects on bone modeling and osteoclast differentiation in mice. Hdac3 deficiency reduced femur and tibia periosteal circumference and increased cortical periosteal osteoclast number. Trabecular bone was likewise reduced and was accompanied by increased osteoclast number per trabecular bone surface. We previously showed that Hdac3 deacetylates the p65 subunit of the NF-κB transcriptional complex to decrease DNA-binding and transcriptional activity. Hdac3-deficient osteoclasts demonstrate increased K310 NF-κB acetylation and NF-κB transcriptional activity. Hdac3-deficient osteoclast lineage cells were hyper-responsive to RANKL and showed elevated ex vivo osteoclast number and size and enhanced bone resorption in pit formation assays. Osteoclast-directed Hdac3 deficiency decreased cortical and trabecular bone mass parameters, suggesting that Hdac3 regulates coupling of bone resorption and bone formation. We surveyed a panel of osteoclast-derived coupling factors and found that Hdac3 suppression diminished sphingosine-1-phosphate production. Osteoclast-derived sphingosine-1-phosphate acts in paracrine to promote bone mineralization. Mineralization of WT bone marrow stromal cells cultured with conditioned medium from Hdac3-deficient osteoclasts was markedly reduced. Expression of alkaline phosphatase, type 1a1 collagen, and osteocalcin was also suppressed, but no change in Runx2 expression was observed. Our results demonstrate that Hdac3 controls bone modeling by suppressing osteoclast lineage cell responsiveness to RANKL and coupling to bone formation. 10.1074/jbc.RA120.013573
The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation. Molecules and cells A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and NF-κB by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as , , and induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and NF-κB by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity. 10.14348/molcells.2017.0098
Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Thummuri Dinesh,Jeengar Manish Kumar,Shrivastava Shweta,Nemani Harishankar,Ramavat Ravindar Naik,Chaudhari Pradip,Naidu V G M Pharmacological research Osteoclasts are multinuclear giant cells responsible for bone resorption in inflammatory bone diseases such as osteoporosis, rheumatoid arthritis and periodontitis. Because of deleterious side effects with currently available drugs the search continues for novel effective and safe therapies. Thymoquinone (TQ), the major bioactive component of Nigella sativa has been investigated for its anti-inflammatory, antioxidant and anticancer activities. However, its effects in osteoclastogenesis have not been reported. In the present study we show for the first time that TQ inhibits nuclear factor-KB ligand (RANKL) induced osteoclastogenesis in RAW 264.7 and primary bone marrow derived macrophages (BMMs) cells. RANKL induced osteoclastogenesis is associated with increased expression of multiple transcription factors via activation of NF-KB, MAPKs signalling and reactive oxygen species (ROS). Mechanistically TQ blocked the RANKL induced NF-KB activation by attenuating the phosphorylation of IkB kinase (IKKα/β). Interestingly, in RAW 264.7 cells TQ inhibited the RANKL induced phosphorylation of MAPKs and mRNA expression of osteoclastic specific genes such as TRAP, DC-STAMP, NFATc1 and c-Fos. In addition, TQ also decreased the RANKL stimulated ROS generation in macropahges (RAW 264.7) and H2O2 induced ROS generation in osteoblasts (MC-3T3-E1). Consistent with in vitro results, TQ inhibited lipopolysaccharide (LPS) induced bone resorption by suppressing the osteoclastogenesis. Indeed, micro-CT analysis showed that bone mineral density (BMD) and bone architecture parameters were positively modulated by TQ. Taken together our data demonstrate that TQ has antiosteoclastogenic effect by inhibiting inflammation induced activation of MAPKs, NF-KB and ROS generation followed by suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors. 10.1016/j.phrs.2015.05.006
Inhibition of Osteoclast Differentiation by Carotenoid Derivatives through Inhibition of the NF-ƙB Pathway. Antioxidants (Basel, Switzerland) The bone protective effects of carotenoids have been demonstrated in several studies, and the inhibition of RANKL-induced osteoclast differentiation by lycopene has also been demonstrated. We previously reported that carotenoid oxidation products are the active mediators in the activation of the transcription factor Nrf2 and the inhibition of the NF-ƙB transcription system by carotenoids. Here, we demonstrate that lycopene oxidation products are more potent than intact lycopene in inhibiting osteoclast differentiation. We analyzed the structure-activity relationship of a series of dialdehyde carotenoid derivatives (diapocarotene-dials) in inhibiting osteoclastogenesis. We found that the degree of inhibition depends on the electron density of the carbon atom that determines the reactivity of the conjugated double bond in reactions such as Michael addition to thiol groups in proteins. Moreover, the carotenoid derivatives attenuated the NF-ƙB signal through inhibition of IƙB phosphorylation and NF-ƙB translocation to the nucleus. In addition, we show a synergistic inhibition of osteoclast differentiation by combinations of an active carotenoid derivative with the polyphenols curcumin and carnosic acid with combination index (CI) values < 1. Our findings suggest that carotenoid derivatives inhibit osteoclast differentiation, partially by inhibiting the NF-ƙB pathway. In addition, carotenoid derivatives can synergistically inhibit osteoclast differentiation with curcumin and carnosic acid. 10.3390/antiox9111167
NF-κB promotes osteoclast differentiation by overexpressing MITF via down regulating microRNA-1276 expression. Zhang Yandong,Ma Chengyuan,Liu Chunshui,Wu Wei Life sciences BACKGROUND:Nuclear factor-kappa B (NF-κB) is an important nuclear transcription factor in cells, involving in a series of processes such as cell proliferation, apoptosis, and differentiation. In this study, we explored the specific mechanism of NF-κB on the differentiation of osteoclasts. METHODS:MicroRNAs (miRNAs) expression microarray data GSE105027 related to osteoarthritis was obtained to screen out the differentially expressed miRNA. Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages, followed by induction to osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). ELISA and RT-qPCR were conducted to examine IL-6 and IL-1β expression. The binding of NF-κB to the miR-1276 promoter region was demonstrated by ChIP assay, and targeting relationship between miR-1276 and MITF was verified by dual luciferase reporter assay. KK, iKBα, NF-kB, p-IKK, p-iKBα, p-NF-kB expression was analyzed by western blot. NF-κB and miR-1276 expression in osteoclasts was examined later. After gain- and less-of-function study, the effects on osteoclast differentiation were detected by TRAP-positive osteoclasts, TRAP activity, TRAP-5b content, F-Actin expression, as well as osteoclast differentiation marker genes expression. RESULTS:NF-κB was activated in osteoclasts, and down-regulation of NF-κB inhibited osteoclast differentiation. Next, miR-1276 was downregulated in osteoclasts after differentiation from monocytes. Meanwhile, NF-κB decreased the expression of miR-1276 by binding to the miR-1276 promoter, thereby elevating MITF expression, thereby promoting osteoclast differentiation. CONCLUSION:In summary, NF-κB promoted osteoclast differentiation through downregulating miR-1276 to upregulate MITF. 10.1016/j.lfs.2020.118093
An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions. Autoimmunity reviews Nuclear Factor Kappa-Β (NF-kB) is recognized as one of the main inflammatory pathways in the Autoimmune Disease (AD) Rheumatoid Arthritis (RA), which exhibits high levels of inflammatory cytokines such as IL-1, TNFa and IL-6 linked to bone erosion and disease progression. NF-kB is also the most studied pathophysiological mechanism in RA, however, over the last few decades, a more recently discovered Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL), also linked to NF-kB activation and bone erosion, has been the topic of interest for research in the area of AD management. As the non-discriminative long term suppression of the NF-kB pathway by pharmacological agents in the management of RA has been linked with a number of side effects and with the discovery of the RANKL mechanism, which may present a more targeted approach to the management of the AD, there has been renewed interest in research on the potential impact of nutritional interventions influencing the NF-kB pathway, RANKL as well as RA disease outcomes. Existing research highlights the potential utility of nutrients such as Omega 3 and Vitamin D, which may lower NF-kB activation in RA. There is, however, a gap in the knowledge of the effects of nutritional interventions on pathophysiological mechanisms contributing to RA and a more robust systematic analysis of whether nutrients or specific vitamins can have an effect on the NF-kB and RANKL main drivers of pathology in RA. Findings from this study suggest the potential of Vitamin D supplementation in lowering the levels of RANKL and related markers/cytokines such as Th17 cell levels, OPG/RANKL ratio and CXCL10 pathway, which may present as a viable nutrition intervention for the management of RA. The methodology of this review involved a Systematic Search of the Literature with a Critical Appraisal of papers. It incorporated three tranche searches of 1. review, 2. animal/in vitro and 3. intervention peer reviewed research published in the last 10 years, resulting in a total of 119 papers. Results provide an overview of the NF-kB pathway, a detailed mechanistic examination of the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL) which is linked to bone erosion, and finally a review of nutritional interventions relating to this mechanism of pathophysiology. The accepted papers were critically appraised using SIGN50 for human studies and the ARRIVE guidelines for animal studies; the narrative was and the extracted information coded into key themes. 10.1016/j.autrev.2020.102741