加载中

    Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors. de Souza Junior Devandir Antonio,Borges Antonio Carlos,Santana Ana Carolina,Oliver Constance,Jamur Maria Célia PloS one Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. 10.1371/journal.pone.0144081
    The Role of Mast Cell Specific Chymases and Tryptases in Tumor Angiogenesis. de Souza Junior Devandir Antonio,Santana Ana Carolina,da Silva Elaine Zayas Marcelino,Oliver Constance,Jamur Maria Celia BioMed research international An association between mast cells and tumor angiogenesis is known to exist, but the exact role that mast cells play in this process is still unclear. It is thought that the mediators released by mast cells are important in neovascularization. However, it is not known how individual mediators are involved in this process. The major constituents of mast cell secretory granules are the mast cell specific proteases chymase, tryptase, and carboxypeptidase A3. Several previous studies aimed to understand the way in which specific mast cell granule constituents act to induce tumor angiogenesis. A body of evidence indicates that mast cell proteases are the pivotal players in inducing tumor angiogenesis. In this review, the likely mechanisms by which tryptase and chymase can act directly or indirectly to induce tumor angiogenesis are discussed. Finally, information presented here in this review indicates that mast cell proteases significantly influence angiogenesis thus affecting tumor growth and progression. This also suggests that these proteases could serve as novel therapeutic targets for the treatment of various types of cancer. 10.1155/2015/142359
    Mast cell chymase: morphofunctional characteristics. Atiakshin Dmitri,Buchwalow Igor,Tiemann Markus Histochemistry and cell biology During degranulation, mast cells secrete a specific set of mediators defined as "secretome" including the preformed mediators that have already been synthesized by a cell and contained in the cytoplasmic granules. This group includes serine proteases, in particular, chymase and tryptase. Biological significance of chymase depends on the mechanisms of degranulation and is characterized by selective effects on the cellular and non-cellular components of the specific tissue microenvironment. Chymase is known to be closely involved in the mechanisms of inflammation and allergy, angiogenesis, and oncogenesis, remodeling of the extracellular matrix of the connective tissue and changes in organ histoarchitectonics. Number of chymase-positive mast cells in the intra-organ population, and the mechanisms of biogenesis and secretome degranulation appear to be the informative criteria for interpreting the state of the internal organs, characterizing not only the diagnostic efficacy but also the properties of targets of pharmacotherapy. In this review, we discussed the current state of knowledge about mast cell chymase as one of the mast cell secretome proteases. Main issues of the reviewed publications are highlighted with our microscopic images of mast cell chymase visualized using immunohistochemical staining. 10.1007/s00418-019-01803-6
    Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Marone Gianni,Varricchi Gilda,Loffredo Stefania,Granata Francescopaolo European journal of pharmacology Angiogenesis, namely, the growth of new blood vessels from pre-existing ones, is an essential process of embryonic development and post-natal growth. In adult life, it may occur in physiological conditions (menstrual cycle and wound healing), during inflammatory disorders (autoimmune diseases and allergic disorders) and in tumor growth. The angiogenic process requires a tightly regulated interaction among different cell types (e.g. endothelial cells and pericytes), the extracellular matrix, several specific growth factors (e.g. VEGFs, Angiopoietins), cytokines and chemokines. Lymphangiogenesis, namely, the growth of new lymphatic vessels, is an important process in tumor development, in the formation of metastasis and in several inflammatory and metabolic disorders. In addition to tumors, several effector cells of inflammation (mast cells, macrophages, basophils, eosinophils, neutrophils, etc.) are important sources of a wide spectrum of angiogenic and lymphangiogenic factors. Human mast cells produce a large array of angiogenic and lymphangiogenic molecules. Primary human mast cells and two mast cell lines constitutively express several isoforms of angiogenic (VEGF-A and VEGF-B) and the two lymphangiogenic factors (VEGF-C and VEGF-D). In addition, human mast cells express the VEGF receptor 1 (VEGFR-1) and 2 (VEGFR-2), the co-receptors neuropilin-1 (NRP1) and -2 (NRP2) and the Tie1 and Tie2 receptors. Immunologically activated human basophils selectively produce VEGF-A and -B, but not VEGF-C and -D. They also release Angiopoietin1 that activates Tie2 on human mast cells. Collectively, these findings indicate that human mast cells and basophils might participate in the complex network involving inflammatory and tumor angiogenesis and lymphangiogenesis. 10.1016/j.ejphar.2015.03.088
    Mast cells in breast cancer angiogenesis. Cimpean Anca Maria,Tamma Roberto,Ruggieri Simona,Nico Beatrice,Toma Alina,Ribatti Domenico Critical reviews in oncology/hematology Mast cells, accumulate in the stroma surrounding certain tumors and take part to the inflammatory reaction occurring at the periphery of the tumor. Mast cell-secreted angiogenic cytokines facilitate tumor vascularization not only by a direct effect but also by stimulating other inflammatory cells of the tumor microenvironment to release other angiogenic mediators. An increased number of mast cells have been demonstrated in angiogenesis associated with solid tumors, including breast cancer. Mast cells might act as a new target for the adjuvant treatment of breast cancer through the selective inhibition of angiogenesis, tissue remodeling and tumor promoting molecules, allowing the secretion of cytotoxic cytokines and preventing mast cell mediated immune-suppression. 10.1016/j.critrevonc.2017.04.009
    Infiltrating mast cells promote renal cell carcinoma angiogenesis by modulating PI3K→︀AKT→︀GSK3β→︀AM signaling. Chen Y,Li C,Xie H,Fan Y,Yang Z,Ma J,He D,Li L Oncogene The recruitment of vascular endothelial cells from the tumor microenvironment (TME) to promote angiogenesis plays key roles in the progression of renal cell carcinoma (RCC). The potential impact of immune cells in the TME on RCC angiogenesis, however, remains unclear. Here, we found that recruitment of mast cells resulted in increased RCC angiogenesis in both in vitro cell lines and in vivo mouse models. Mechanistic analyses revealed that RCC recruited mast cells by modulating PI3K→︀AKT→︀GSK3β→︀AM signaling. A clinical survey of human RCC samples also showed that higher expression of the PI3K→︀AKT→︀GSK3β→︀AM signaling pathway correlated with increased angiogenesis. Interruption of PI3K→︀AKT→︀GSK3β→︀AM signaling via specific inhibitors led to decreased recruitment of mast cells, and targeting this infiltrating mast cell-related signaling via an AKT-specific inhibitor suppressed RCC angiogenesis in xenograft mouse models. Together, these results identified a novel role of infiltrating mast cells in RCC angiogenesis and metastasis and suggest a new strategy for treating RCC by targeting this newly identified signaling pathway. 10.1038/onc.2016.442
    Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Sammarco Giuseppe,Varricchi Gilda,Ferraro Valentina,Ammendola Michele,De Fazio Michele,Altomare Donato Francesco,Luposella Maria,Maltese Lorenza,Currò Giuseppe,Marone Gianni,Ranieri Girolamo,Memeo Riccardo International journal of molecular sciences Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization. 10.3390/ijms20092106
    Local Mast Cell Activation Promotes Neovascularization. Bot Ilze,Velden Daniël van der,Bouwman Merel,Kröner Mara J,Kuiper Johan,Quax Paul H A,de Vries Margreet R Cells Mast cells have been associated with arteriogenesis and collateral formation. In advanced human atherosclerotic plaques, mast cells have been shown to colocalize with plaque neovessels, and mast cells have also been associated with tumor vascularization. Based on these associations, we hypothesize that mast cells promote angiogenesis during ischemia. In human ischemic muscle tissue from patients with end-stage peripheral artery disease, we observed activated mast cells, predominantly located around capillaries. Also, in mouse ischemic muscles, mast cells were detected during the revascularization process and interestingly, mast cell activation status was enhanced up to 10 days after ischemia induction. To determine whether mast cells contribute to both arteriogenesis and angiogenesis, mast cells were locally activated immediately upon hind limb ischemia in C57Bl/6 mice. At day 9, we observed a 3-fold increase in activated mast cell numbers in the inguinal lymph nodes. This was accompanied by an increase in the amount of Ly6C inflammatory monocytes. Interestingly, local mast cell activation increased blood flow through the hind limb (46% at day 9) compared to that in non-activated control mice. Histological analysis of the muscle tissue revealed that mast cell activation did not affect the number of collaterals, but increased the collateral diameter, as well as the number of CD31 capillaries. Together, these data illustrate that locally activated mast cell contribute to arteriogenesis and angiogenesis. 10.3390/cells9030701
    Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. Xu Wanfu,Qian Jiabi,Zeng Fangyin,Li Songyu,Guo Wenjing,Chen Liping,Li Guihuan,Zhang Zhishuai,Wang Qiming Jane,Deng Fan Journal of experimental & clinical cancer research : CR BACKGROUND:Mast cells are being increasingly recognized as critical components in the tumor microenvironment. Protein Kinase D (PKD) is essential for the progression of prostate cancer, but its role in prostate cancer microenvironment remains poorly understood. METHODS:The expression of PKD, mast cells and microvessel density were examined by IHC. The clinical significance was determined by statistical analyses. The biological function of PKD and the underlying mechanisms were investigated using in vitro and in vivo models. RESULTS:PKD2/3 contributed to MCs recruitment and tumor angiogenesis in the prostate cancer microenvironment. Clinical data showed that increased activation of PKD at Ser744/748 in prostate cancer was correlated with mast cell infiltration and microvascular density. PKD2/3 silencing of prostate cancer cells markedly decreased MCs migration and tube formation of HUVEC cells. Moreover, PKD2/3 depletion not only reduced SCF, CCL5 and CCL11 expression in prostate cancer cells but also inhibited angiogenic factors in MCs. Conversely, exogenous SCF, CCL5 and CCL11 reversed the effect on MCs migration inhibited by PKD2/3 silencing. Mechanistically, PKD2/3 interacted with Erk1/2 and activated Erk1/2 or NF-κB signaling pathway, leading to AP-1 or NF-κB binding to the promoter of scf, ccl5 and ccl11. Finally, PKD-specific inhibitor significantly reduced tumor volume and tumor growth in mice bearing RM-1 prostate cancer cells, which was attributed to attenuation of mast cell recruitment and tumor angiogenesis. CONCLUSIONS:These results demonstrate a novel PKDs function that contributes to tumor angiogenesis and progression through mast cells recruitment in prostate cancer microenvironment. 10.1186/s13046-019-1118-y
    Human Skin-Derived Mast Cells Spontaneously Secrete Several Angiogenesis-Related Factors. McHale Cody,Mohammed Zahraa,Gomez Gregorio Frontiers in immunology Mast cells are classically recognized as cells that cause IgE-mediated allergic reactions. However, their ability to store and secrete vascular endothelial growth factor (VEGF) suggests a role in vascular development and tumorigenesis. The current study sought to determine if other angiogenesis-related factors, in addition to VEGF, were also secreted by human tissue-derived mast cells. Using proteome array analysis and ELISA, we found that human skin-derived mast cells spontaneously secrete CXCL16, DPPIV, Endothelin-1, GM-CSF, IL-8, MCP-1, Pentraxin 3, Serpin E1, Serpin F1, TIMP-1, Thrombospondin-1, and uPA. We identified three groups based on their dependency for stem cell factor (SCF), which is required for mast cell survival: Endothelin-1, GM-CSF, IL-8, MCP-1, and VEGF (dependent); Pentraxin 3, Serpin E1, Serpin F1, TIMP-1, and Thrombospondin-1 (partly dependent); and CXCL16, DPPIV, and uPA (independent). Crosslinking of FcεRI with multivalent antigen enhanced the secretion of GM-CSF, Serpin E1, IL-8, and VEGF, and induced Amphiregulin and MMP-8 expression. Interestingly, FcεRI signals inhibited the spontaneous secretion of CXCL16, Endothelin-1, Serpin F1, Thrombospondin-1, MCP-1 and Pentraxin-3. Furthermore, IL-6, which we previously showed could induce VEGF, significantly enhanced MCP-1 secretion. Overall, this study identified several angiogenesis-related proteins that, in addition to VEGF, are spontaneously secreted at high concentrations from human skin-derived mast cells. These findings provide further evidence supporting an intrinsic role for mast cells in blood vessel formation. 10.3389/fimmu.2019.01445
    Mast Cells and Angiogenesis in Human Plasma Cell Malignancies. Ribatti Domenico,Tamma Roberto,Vacca Angelo International journal of molecular sciences Bone marrow angiogenesis plays an important role in the pathogenesis and progression of hematological malignancies. It is well known that tumor microenvironment promotes tumor angiogenesis, proliferation, invasion, and metastasis, and also mediates mechanisms of therapeutic resistance. An increased number of mast cells has been demonstrated in angiogenesis associated with hematological tumors. In this review we focused on the role of mast cells in angiogenesis in human plasma cell malignancies. In this context, mast cells might act as a new target for the adjuvant treatment of these tumors through the selective inhibition of angiogenesis, tissue remodeling and tumor-promoting molecules, permitting the secretion of cytotoxic cytokines and preventing mast cell-mediated immune suppression. 10.3390/ijms20030481
    Mast cells and angiogenesis in pancreatic ductal adenocarcinoma. Longo Vito,Tamma Roberto,Brunetti Oronzo,Pisconti Salvatore,Argentiero Antonella,Silvestris Nicola,Ribatti Domenico Clinical and experimental medicine Mast cells are recognized as critical components of the tumor stromal microenvironment in several solid and hematological malignancies, promoting angiogenesis and tumor growth. A correlation between mast cells infiltration, angiogenesis and tumor progression has been reported for pancreatic ductal adenocarcinoma as well. Mast cells contribute to the aggressiveness of the pancreatic ductal carcinoma enhancing the expression of several pro-angiogenic factors such as vascular endothelial growth factor, fibroblast growth factor-2, platelet-derived growth factor and angiopoietin-1 as well as stimulating the pancreatic cancer cells proliferation by IL-13 and tryptase. The disruption of this pro-angiogenic and proliferative stimulation by inhibiting the mast cells migration and degranulation is under investigation as a potential therapeutic approach in pancreatic ductal adenocarcinoma patients. This review will summarize the literature concerning the mast cells infiltration in the pancreatic ductal adenocarcinoma analyzing its role in angiogenesis and tumor progression. 10.1007/s10238-018-0493-6
    Tryptase, a novel angiogenic factor stored in mast cell granules. Ribatti Domenico,Ranieri Girolamo Experimental cell research Human mast cells (MCs) are a rich reservoir of neutral proteases, packed in large amounts in their granules and comprising a high fraction of all cellular proteins. Among these proteases, tryptase is involved in angiogenesis after its release from activated MC granules, as it has been demonstrated in different in vitro and in vivo assays. Moreover, tryptase-positive MCs increase in number and vascularization increases in a linear fashion in different solid and hematological tumors. This complex interplay between MCs and tumor angiogenesis have led to consider the therapeutic use of angiogenesis inhibitors, which specifically target the angiogenic activity of tryptase, such as gabexate mesilate and nafamostat mesilate, two inhibitors of trypsin-like serine proteases. 10.1016/j.yexcr.2014.11.014
    Mast Cell Protease 7 Promotes Angiogenesis by Degradation of Integrin Subunits. de Souza Junior Devandir A,Santana Carolina,Vieira Gabriel V,Oliver Constance,Jamur Maria Celia Cells Previous studies from our laboratory have shown that during angiogenesis in vitro, rmMCP-7 (recombinant mouse mast cell protease-7) stimulates endothelial cell spreading and induces their penetration into the matrix. The ability of rmMCP-7 to induce angiogenesis in vivo was assessed in the present study using a directed in vivo angiogenesis assay (DIVAA™). Vessel invasion of the angioreactor was observed in the presence of rmMCP-7 but was not seen in the control. Since integrins are involved in endothelial cell migration, the relationship between rmMCP-7 and integrins during angiogenesis was investigated. Incubation with rmMCP-7 resulted in a reduction in the levels of integrin subunits αv and β1 on SVEC4-10 endothelial cells during angiogenesis in vitro. Furthermore, the degradation of integrin subunits occurs both through the direct action of rmMCP-7 and indirectly via the ubiquitin/proteasome system. Even in the presence of a proteasome inhibitor, incubation of endothelial cells with rmMCP-7 induced cell migration and tube formation as well as the beginning of loop formation. These data indicate that the direct degradation of the integrin subunits by rmMCP-7 is sufficient to initiate angiogenesis. The results demonstrate, for the first time, that mMCP-7 acts in angiogenesis through integrin degradation. 10.3390/cells8040349
    Mast Cells Interact with Endothelial Cells to Accelerate In Vitro Angiogenesis. de Souza Junior Devandir Antonio,Mazucato Vivian Marino,Santana Ana Carolina,Oliver Constance,Jamur Maria Celia International journal of molecular sciences Angiogenesis is a complex process that involves interactions between endothelial cells and various other cell types as well as the tissue microenvironment. Several previous studies have demonstrated that mast cells accumulate at angiogenic sites. In spite of the evidence suggesting a relationship between mast cells and angiogenesis, the association of mast cells and endothelial cells remains poorly understood. The present study aims to investigate the relationship between mast cells and endothelial cells during in vitro angiogenesis. When endothelial cells were co-cultured with mast cells, angiogenesis was stimulated. Furthermore, there was direct intercellular communication via gap junctions between the two cell types. In addition, the presence of mast cells stimulated endothelial cells to release angiogenic factors. Moreover, conditioned medium from the co-cultures also stimulated in vitro angiogenesis. The results from this investigation demonstrate that mast cells have both direct and indirect proangiogenic effects and provide new insights into the role of mast cells in angiogenesis. 10.3390/ijms18122674
    The Hidden Side of Disodium Cromolyn: from Mast Cell Stabilizer to an Angiogenic Factor and Antitumor Agent. Cimpean Anca Maria,Raica Marius Archivum immunologiae et therapiae experimentalis Scattered data suggested that disodium cromolyn, well known as a mast cell stabilizer shows some effects on tumor cells and tumor-associated newly formed vascular networks. Most of these studies used tumor cell lines assessed by in vitro studies. Nor disodium cromolyn effects on melanoma cell lines were studied yet, neither its influence on recruited tumor blood vessels or angiogenic growth factors expression. We designed here a study regarding disodium cromolyn effects on A375 melanoma tumor cells implanted on chick embryo chorioallantoic membrane (CAM) and on blood vessels recruited by the experimental melanoma in the absence of mast cells, knowing that within CAM, the existence of mast cells are not certified yet. We also assessed the role of disodium cromolyn on the expression of several angiogenic growth factors. Disodium cromoglycate differentially acts on tumor cells and blood vessels. Extensive necrotic areas of experimental melanoma together with an increased number of peritumor blood vessels were observed in treated specimens as compared with untreated tumors. Disodium cromolyn inhibited VEGF and PDGF-BB expression, and had no effects on EG VEGF expression between treated and non treated specimens in a mast cells free microenvironment. Our results sustain the direct antitumor effects of sodium cromolyn and suggest the involvement of several growth factors in the recruitment of tumor vessels by A375 melanoma tumor cells. The expression of growth factors is differentially influenced by sodium cromolyn treatment. 10.1007/s00005-016-0408-8
    The impact of angiogenesis inhibitors on survival of patients with small cell lung cancer. Shi Xiaoshun,Dong Xiaoying,Young Sylvia,Chen Allen Menglin,Liu Xiguang,Zheng Zhouxia,Huang Kailing,Lu Di,Feng Siyang,Morahan Grant,Cai Kaican Cancer medicine BACKGROUND:Small cell lung cancer (SCLC) is a highly invasive and lethal neuroendocrine tumor. Antiangiogenic drugs have been reported in the treatment of SCLC. We aimed to provide a comprehensive evaluation of the impact of angiogenic inhibitors on SCLC survival using network meta-analysis. METHODS:The impact of five angiogenesis inhibitors, that is, vandetanib (Van), bevacizumab (Bev), Rh-endostatin (End), sunitinib (Sun), and thalidomide (Tha), on progression-free survival (PFS) and overall survival (OS) was evaluated by conducting a network meta-analysis. RNA sequencing data were downloaded from publicly available databases. RESULTS:Nine phase II and III randomized controlled trials (RCTs), that involved 1599 participants, that investigated angiogenesis inhibitors in the treatment of SCLC were included in this meta-analysis. Sun and Bev achieved better PFS than Tha (Bev VS. Tha, HR = 0.88, 95% CI: 0.79-0.98, Sun VS. Tha, HR = 0.80, 95% CI: 0.65-1.00). Moreover, Sun and Bev were superior to placebo in terms of PFS (Bev VS. Placebo, HR = 0.89, 95%CI: 0.81-0.97, Sun VS. Placebo, HR = 0.81, 95% CI: 0.66-1.00). Based on this study, we found no significant difference of OS of SCLC. The angiogenesis pathway and expression of target genes were globally deactivated in SCLC tissue. CONCLUSION:Results of this network meta-analysis indicate that the PFS outcome of SCLC with Sun or Bev drugs is superior to that of Tha. The improved therapeutic impact of angiogenesis inhibitors on SCLC needs more evidence, such as long-term observation in clinical trials, to be validated. 10.1002/cam4.2462
    Emerging angiogenesis inhibitors for non-small cell lung cancer. Malapelle Umberto,Rossi Antonio Expert opinion on emerging drugs : Angiogenesis represents a complex process crucial during embryo development, wound healing, and collateral formation for improved organ perfusion. Numerous stimulatory and inhibitory pathways through their balance regulate angiogenesis and vascular homeostasis. Targeting the pathways implicated in the regulation of angiogenesis and neo-angiogenesis plays an important role in cancer research, treatment, and patients' outcome. Antiangiogenic strategies, including monoclonal antibodies binding vascular endothelial growth factor (VEGF) or the corresponding receptor and small molecules which inhibit the function of different angio-related tyrosine kinase, produced interesting results in cancer treatments including non-small-cell lung cancer (NSCLC). : The current state-of-the-art of anti-angiogenesis treatment in the management of NSCLC patients is reviewed and discussed. A structured search of bibliographic databases for peer-reviewed research literature and of main meetings using a focused review question was undertaken in order to discuss about emerging angiogenesis inhibitors in NSCLC. : Targeting angiogenesis remains an important therapeutic strategy in the management of NSCLC. Moreover, VEGF has been recognized having also an immunosuppressive action leading to investigate the potential activity of angiogenic inhibitors in restoring the antitumor immunity by targeting VEGF/VEGF-Receptor. Furthermore, new anti-angiogenic drugs for which there is also the availability of predictive biomarkers are welcome. 10.1080/14728214.2019.1619696
    Angiogenesis inhibitors as therapeutic agents in cancer: Challenges and future directions. Lin Zhexuan,Zhang Quanwei,Luo Wenhong European journal of pharmacology Angiogenesis has become an attractive target for cancer therapy since the US Food and Drug Administration (FDA) approved the first angiogenesis inhibitor (bevacizumab) for the treatment of metastatic colorectal cancer in 2004. In following years, a large number of angiogenesis inhibitors have been discovered and developed, ranging from monoclonal antibodies, endogenous peptides, to small organic molecules and microRNAs. Many of them are now entering the clinical trial, or achieving approval for clinical use. However, major limitations have been observed about angiogenesis inhibitors by continued clinical investigations, such as resistance, enhancing tumor hypoxia and reducing delivery of chemotherapeutic agents, which might be the main reason for poor improvement in overall survival after angiogenesis inhibitor administration in clinic. Therefore, optimal anti-angiogenic therapy strategies become critical. The present review summarizes recent researches in angiogenesis inhibitors, and proposes a perspective on future directions in this field. 10.1016/j.ejphar.2016.10.039
    Tumour Angiogenesis and Angiogenic Inhibitors: A Review. Yadav Lalita,Puri Naveen,Rastogi Varun,Satpute Pranali,Sharma Vandana Journal of clinical and diagnostic research : JCDR Angiogenesis is a complex process depending on the coordination of many regulators and there by activating angiogenic switch. Recent advances in understanding of angiogenic mechanism have lead to the development of several anti-angiogenic and anti-metastatic agents that use the strategy of regulation of angiogenic switch. Antiangiogenic therapy is a form of treatment not cure for cancer and represents a highly effective strategy for destroying tumour because vascular supply is the fundamental requirement for growth of tumour. Because of the quiescent nature of normal adult vasculature, angiogenic inhibitors are expected to confer a degree of specificity when compared to nonspecific modalities of chemo and radiotherapy, so it has the advantage of less toxicities, does not induce drug resistance and deliver a relatively non toxic, long term treatment of tumour. 10.7860/JCDR/2015/12016.6135