加载中

    Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Tang Zhaomin,Zhang Lei,Wang Yi,Li Dan,Zhong Zhendong,Zhou Shaobing Acta biomaterialia UNLABELLED:Highly efficient delivery of therapeutic agents to target sites is of great importance for achieving excellent therapeutic efficacy in cancer treatment. Here, we report a redox-responsive star-shaped magnetic micelle with both active-targeted and magnetic-guided functions. The magnetic star-shaped micelles are formed by self-assembly of four-arm poly(ethylene glycol) (PEG)-poly(ε-caprolactone) (PCL) copolymers with disulfide bonds as intermediate linkers. Anticancer drug doxorubicin (DOX) and magnetic iron oxide nanoparticles (Fe3O4) are simultaneously encapsulated into the hydrophobic cores. PBA ligands are chemically conjugated to the end of the hydrophilic PEG segments, endowing the active targeting of nanocarriers. Both qualitative and quantitative analyses of the intracellular uptake of these micelles with active-targeting and dual-targeting are performed in vitro by cultured with salic acid (SA)-positive tumor cells (human liver carcinoma cell line HepG2, human cervical cancer cell line HeLa) and SA-negative tumor cells (human breast adenocarcinoma cell line MCF-7, human non-small cell lung cancer cell line A549) in the presence or absence of a permanent magnetic field. In vivo biodistribution studies with active-targeting and dual-targeting and in vivo anti-tumor effect are carried out in detail after being applied to the BALB/c mice bearing mouse H22 hepatocarcinoma cells tumor model. These in vivo results demonstrate that a great amount of dual-targeted magnetic micelles accumulate around the tumor tissues by the magnetic-guiding and in turn are taken up by the tumor cells through SA-mediated endocytosis, leading to a high therapeutic efficacy to the artificial solid tumor. STATEMENT OF SIGNIFICANCE:A redox-responsive star-shaped magnetic micelle with both active-targeted and magnetic-guided functions was developed. Both qualitative and quantitative analysis of the intracellular uptake with dual-targeting of these micelles were performed in vitro by salic acid (SA)-positive tumor cells. The in vivo results demonstrate that a great amount of dual-targeted magnetic micelles accumulated around the tumor tissues, leading to a high therapeutic efficacy to artificial solid tumor. 10.1016/j.actbio.2016.06.038
    Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration. Wang Xin,Wei Bing,Cheng Xu,Wang Jun,Tang Rupei Nanotechnology Phenylboronic acid-decorated nanoparticles (NPs) were prepared for tumor-targeted drug delivery. 3-carboxyphenylboronic acid (3-CPBA) was modified on the surface of conventional gelatin NPs (designated as NP1) to give tumor-targeting NPs (designated as NP2). The morphology and stability of NP1 and NP2 were then investigated using transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The results show that both NP1 and NP2 are spherical-like and kinetically stable under various conditions. Doxorubicin hydrochloride (DOX) was used as a model anticancer drug and was loaded into NP1 (NP1-DOX) and NP2 (NP2-DOX). The i n vitro cellular uptake and cytotoxicity of NP1-DOX and NP2-DOX were measured using SH-SY5Y cells, H22 cells, and HepG2 cells. Tumor penetration, accumulation, and antitumor activity were investigated using SH-SY5Y tumor-like spheroids and H22 tumor-bearing mice. All results demonstrated that the conjugation of 3-CPBA can efficiently enhance non-targeted NPs' tumor-homing activity, thus improving their tumor accumulation and antitumor effect. 10.1088/0957-4484/27/38/385101
    pH-responsive jello: gelatin gels containing fatty acid vesicles. Dowling Matthew B,Lee Jae-Ho,Raghavan Srinivasa R Langmuir : the ACS journal of surfaces and colloids We describe a new way to impart pH-responsive properties to gels of biopolymers such as gelatin. This approach involves the embedding of pH-sensitive nanosized vesicles within the gel. The vesicles employed here are those of sodium oleate (NaOA), a fatty-acid-based amphiphile with a single C18 tail. In aqueous solution, NaOA undergoes a transition from vesicles at a pH approximately 8 to micelles at a pH higher than approximately 10. Here, we combine NaOA and gelatin at pH 8.3 to create a vesicle-loaded gel and then bring the gel in contact with a pH 10 buffer solution. As the buffer diffuses into the gel, the vesicles within the gel get transformed into micelles. Accordingly, a vesicle-micelle front moves through the gel, and this can be visually identified by the difference in turbidity between the two regions. Vesicle disruption can also be done in a spatially selective manner to create micelle-rich domains within a vesicle-loaded gel. A possible application of the above approach is in the area of pH-dependent controlled release. A vesicle-to-micelle transition releases hydrophilic solutes encapsulated within the vesicles into the bulk gel, and in turn these solutes can rapidly diffuse out of the gel into the external bath. Experiments with calcein dye confirm this concept and show that we can indeed use the pH in the bath to tune the release rate of solutes from vesicle-loaded gels. 10.1021/la804159g
    Study on the interaction between gelatin and polyurethanes derived from fatty acids. González-Paz R J,Lligadas G,Ronda J C,Galià M,Ferreira A M,Boccafoschi F,Ciardelli G,Cádiz V Journal of biomedical materials research. Part A In this study, gelatin was blended to proprietary noncytotoxic polyurethanes (PU) derived from vegetable oils with different weight ratios, as material for the preparation of novel biomedical products. The PU/gelatin blends were characterized for their morphology through scanning electron microscopy. Mechanical and thermal properties, chemical interactions between components, degradation behavior, surface properties, cell adhesion, and bioactivity were investigated as a function of the protein content. Higher blend miscibility was observed for the amorphous PUs, derived from oleic acid. Properties of PU/gelatin films were strongly influenced by the concentration of gelatin in the films. Gelatin enhanced the hydrophilicity, bioactivity, and cell adhesion of PUs. 10.1002/jbm.a.34407
    Oleic Acid Coated Gelatin Nanoparticles Impregnated Gel for Sustained Delivery of Zaltoprofen: Formulation and Textural Characterization. Pawar Savita,Pande Vishal Advanced pharmaceutical bulletin PURPOSE:In the present study, we have formulated zaltoprofen loaded, surface decorated, biodegradable gelatin nanogel and evaluated its texture characterization. METHODS:The method used to prepare gelatin nanoparticles (GNP) was 'two step desolvation' and its surface decoration was performed with oleic acid (OA). The GNP was optimized by DOE software. Nanogels were evaluated for particle size entrapment efficiency, texture properties, SEM, in-vitro, ex-vivo drug release studies, in-vitro characterization, stability and in vivo evaluation of nanogel for anti-inflammatory activity was carried out by carrageenan induced rat paw edema method as an anti-inflammatory experimental model. RESULTS:The formulated GNP with particle size and entrapment efficiency of optimized batch was found to be 247.1 nm and 76.21% respectively. The SEM of GNP shows smooth and spherical shape. In-vitro and Ex-vivo drug release shows that there was 69.47% and 78.59% drug released within 48 hrs. It follows Ritger peppas model, which indicates sustained drug release. The good texture properties of nanogel were observed from texture analysis graphs.In vivo studies of our formulation give significant results compared to the marketed nanogel. Stability data revealed stability of nanogel formulation up to 3 months. CONCLUSION:The present approach can provide us promising results of the sustained analgesic activity and the stability of drug within the GNP. 10.15171/apb.2015.073
    Shear Stress-Dependent Targeting Efficiency Using Self-Assembled Gelatin-Oleic Nanoparticles in a Biomimetic Microfluidic System. Kang Taehee,Park Chulhun,Meghani Nileshkumar,Tran Thao T D,Tran Phuong H L,Lee Beom-Jin Pharmaceutics Cellular properties and microenvironments, as well as the characteristics of nanoparticles (NPs), affect the cellular uptake and cytotoxic effects of drug-loaded NPs. Since there is fluid flow in the human blood system, fluid flow also affects the drug delivery efficiency of NPs. This study aimed to evaluate the cellular behaviors of drug-loaded soft NPs on A549 cancer cells under different levels of shear stress (0.5, 5, and 50 dynes/cm) in the biomimetic microfluidic system. The soft self-assembled NPs were formed by the gelatin-oleic conjugate (GOC). The poorly water-soluble coumarin-6 or paclitaxel (PTX) were used as model markers for encapsulation within self-assembled NPs (C-GONs or PTX-GONs, respectively). The cellular uptake of C-GONs was found to be improved with shear-stress dependence. The inhibitory concentration (IC) of PTX-GONs at 0.5, 5, and 50 dynes/cm was 0.106 µg/mL, 0.108 µg/mL, and 0.091 µg/mL, respectively, as compared to 0.138 µg/mL in a static condition. The cell killing efficiency of PTX-GONs was increased in the highest shear stress of 50 dynes/cm in the static condition, and other levels of shear stress in dynamic conditions. 10.3390/pharmaceutics12060555
    Novel multifunctional biocompatible gelatin-oleic acid conjugate: self-assembled nanoparticles for drug delivery. Tran Phuong Ha-Lien,Tran Thao Truong-Dinh,Vo Toi Van,Vo Chau Le-Ngoc,Lee Beom-Jin Journal of biomedical nanotechnology In this work, a novel, biocompatible conjugates of gelatin and oleic acid (GOC) were synthesized by a novel aqueous solvent-based method that overcame challenges of completely contrary solubility between gelatin and oleic acid (OA). The GO nanoparticles (GONs) and Paclitaxel encapsulated nanoparticles (PTX-GON) were prepared by self-assembly in water. These nanoparticles (NPs) were then conjugated with folic acid (FA) for targeting cervical cancer cells (Hela cells) and were characterized for their various physicochemical and pharmaceutical properties. Fourier transform infrared spectroscopy (FT-IR) and 1H NMR studies indicated the successful synthesis of GOC which showed low critical aggregation concentration in water (0.015 mg/ml). All NPs were stable in human blood serum and their mean diameters were below 300 nm suitable for passive targeting. Powder X-ray diffraction (PXRD) diffractograms showed the reduction in drug crystallinity and hence, leading to the solubility enhancement of PTX. The release of PTX from both PTX-GON and FA conjugated PTX-GON (PTX-FA-GON) was controlled for a long time. The cytotoxicity results demonstrated great advantages of PTX-FA-GON and PTX-GON over the conventional dosage form of pacliaxel (Taxol). These results, therefore, indicate that GOC is a promising material to prepare drug encapsulated NP as a controlled delivery system and PTX-FA-GON is a potential targeted delivery system for cancer therapy.
    Biodistribution and pharmacokinetics in rats and antitumor effect in various types of tumor-bearing mice of novel self-assembled gelatin-oleic acid nanoparticles containing paclitaxel. Tran Phuong Ha-Lien,Tran Thao Truong-Dinh,Lee Beom-Jin Journal of biomedical nanotechnology The aim of this study was to investigate the pharmacokinetics and biodistribution in Sprague-Dawley rats, anti-tumor activity and acute toxicity in different tumor-bearing mice of novel biocompatible nanoparticles. Paclitaxel (PTX) was selected as a model drug and loaded on different tumor types and at various doses. The nanoparticles were prepared using a newly synthesized gelatin-oleic acid conjugate via self-assembly in an aqueous solution. The nanoparticles were further functionalized using folic acid (FA) as a targeting ligand for cancer. The in vivo effects of the nanoparticles were compared with the commercially available Taxol (a solution form of PTX) as a reference dosage form. The in vivo studies confirmed that nanoparticles showed improved therapeutic effects on tumors and significantly reduced the toxic effects associated with Taxol, even at the 50% lethal dose (LD50). The in vivo pharmacokinetic parameters and biodistribution of the nanoparticles containing PTX also indicated slower clearance, longer blood circulation and higher tumor selectivity. Furthermore, the functionalized nanoparticles with FA were more effective than the non-functionalized nanoparticles. Thus, the suitable properties of gelatin-oleic nanoparticles (GON) as a drug carrier and the effective targeting ligand could synergistically maximize the in vivo anti-tumor efficacy resulting in delayed tumor volume growth and hence, providing versatile strategies in cancer therapy and drug delivery.
    Enhanced solubility and modified release of poorly water-soluble drugs via self-assembled gelatin-oleic acid nanoparticles. Tran Phuong Ha-Lien,Tran Thao Truong-Dinh,Lee Beom-Jin International journal of pharmaceutics Recently, we synthesized novel amphiphilic gelatin-oleic acid (GO) conjugate to prepare self-assembled nanoparticles for drug delivery. The aim of this study was to investigate pharmaceutical potentialities of self-assembled GO nanoparticles for solubility enhancement and modified release of poorly water-soluble drugs. Three poorly water-soluble model drugs with different pH-dependent solubility (valsartan and aceclofenac, insoluble at pH 1.2; telmisartan, insoluble at pH 6.8) were chosen to investigate the potential contributions of self-assembled GO nanoparticles to solubility enhancement and controlled release. The particle size of the drug-loaded nanoparticles was 200-250 nm. Zeta potential was calculated, and instrumental analysis such as powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectroscopy were used to investigate the physicochemical properties of the drug-loaded nanoparticles. Compared to the drug alone, the drug-loaded nanoparticles showed enhanced solubility. Furthermore, the release profiles of the model drugs were modified in a controlled manner. The current self-assembled GO nanoparticles can provide a versatile potential in drug delivery and tumor targeting. 10.1016/j.ijpharm.2013.07.025
    Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles. Meghani Nileshkumar M,Amin Hardik,Park Chulhun,Cui Jing-Hao,Cao Qing-Ri,Choi Kyung Hyun,Lee Beom-Jin Materials science & engineering. C, Materials for biological applications Nanoparticle-protein interactions under conditions mimicking physiology determine how nanoparticles (NPs) will behave inside blood vessels and, therefore, the overall outcome of the drug-delivery system. Here, for the first time, we explore the effects of bio-mimicking shear stress and protein corona conditions on novel active targeting of clickable fattigation nanoparticles (NPs) for cancer therapy. Active targeting dibenzocyclooctyne-functionalized biocompatible gelatin-oleic NPs (GON-DBCOs) via a bioorthogonal click reaction were prepared by the desolvation method for delivery of docetaxel (DTX) to lung and breast cancer models. The effect of shear stress (5 dyne/cm) and human serum albumin (HSA) protein corona on the cellular behavior of NPs was explored under a dynamic microfluidic system in lung (A549) and breast (MCF-7) cancer cell lines. The developed drug-loaded NPs had a particle size of 300 nm, a narrow size distribution, positive zeta potential, high encapsulation efficacy (72.4%), and spherical morphology. The particle size of the protein corona-coated NPs increased to 341 nm with a negative zeta potential. The inhibitory dose (IC) increased approximately 3- and 42-fold in A549 and MCF-7 cells, respectively, under dynamic microfluidic conditions compared to static conditions. Cellular uptake was significantly decreased in the presence of shear stress and a protein corona, compared with static conditions, in both lung (A549, **p < 0.01) and breast (MCF-7, *p < 0.05) cancer cell lines. Clathrin-and energy-dependent pathways were found to be involved in the cellular uptake of NPs. This study could serve as a vital tool for the evaluation of NPs under aggressive bio-mimicking conditions comprising shear stress and a protein corona to predict the in vivo performance of NPs and support the preclinical and clinical translation of NP drug delivery systems. 10.1016/j.msec.2020.110760
    New method and characterization of self-assembled gelatin-oleic nanoparticles using a desolvation method via carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction. Park Chulhun,Vo Chau Le-Ngoc,Kang Taehee,Oh Euichaul,Lee Beom-Jin European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V In this study, we investigated a new method for the preparation of gelatin-oleic conjugate (GOC) as an amphiphilic biomaterial to load model anti-cancer drugs into self-assembled nanoparticles (NPs). Oleic acid (OA) was covalently bound to gelatin via carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction in water-ethanol cosolvent to form a GOC. Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance ((1)H NMR) clearly indicated the successful synthesis of GOC. The percentage of gelatin amino groups reacted with OA was up to 50% as determined using the 2,4,6-trinitrobenzene sulfonic acid (TNBS) method. Subsequently, gelatin-oleic nanoparticles (GONs) were prepared using a desolvation method with glutaraldehyde or genipin used as a crosslinker for comparison. Irinotecan hydrochloride (IRT) was used as a model drug to load into GONs using incubation or an in-process adding method for comparison. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) data showed that the sizes of GONs and IRT-loaded GONs (IRT-GONs) were below 250 nm. The zeta potentials of the GONs and irinotecan-loaded IRT-GONs were below -20 mV, which was found to be stable in suspension against the aggregation process. The incubation method was more suitable for drug loading because it did not affect the process of GON formation and thus did not increase their size much compared to the change in size with the in-process adding method. The lipophilic property of the oleic moiety in the GOC increased the affinity between GOC molecules, thus reducing the amount of crosslinking agents needed to stabilize GONs compared to gelatin nanoparticles (GNs). As novel approaches for the synthesis of protein-fatty acid complexes, chemical reaction has been suggested for the synthesis of GOC. The above results show that GOC synthesized via new method is a promising biomaterial based upon preparation of nanoparticles. 10.1016/j.ejpb.2014.12.002
    Design and evaluation of clickable gelatin-oleic nanoparticles using fattigation-platform for cancer therapy. Meghani Nilesh M,Amin Hardik H,Park Chulhun,Park Jun-Bom,Cui Jing-Hao,Cao Qing-Ri,Lee Beom-Jin International journal of pharmaceutics The principles of bioorthogonal click chemistry and metabolic glycoengineering were applied to produce targeted anti-cancer drug delivery via fattigation-platform-based gelatin-oleic nanoparticles. A sialic acid precursor (AcManNAz) was introduced to the cell surface. Gelatin and oleic acid were conjugated by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry with the subsequent covalent attachment of dibenzocyclooctyne (DBCO) in a click reaction on the cell surface. The physicochemical properties, drug release, in vitro cytotoxicity, and cellular uptake of DBCO-conjugated gelatin oleic nanoparticles (GON-DBCO; particle size, ∼240 nm; zeta potential, 6 mV) were evaluated. Doxorubicin (DOX) was used as a model drug and compared with the reference product, Caelyx®. A549 and MCF-7 cell lines were used for the in vitro studies. GON-DBCO showed high DOX loading and encapsulation efficiencies. In A549 cells, the IC50 value for GON-DBCO-DOX (1.29 µg/ml) was six times lower than that of Caelyx® (10.54 µg/ml); in MCF-7 cells, the IC50 values were 1.78 µg/ml and 2.84 µg/ml, respectively. Confocal microscopy confirmed the click reaction between GON-DBCO and Ac4ManNAz on the cell surface. Flow cytometry data revealed that the intracellular uptake of GON-DBCO-DOX was approximately two times greater than that of GON-DOX and Caelyx®. Thus, the newly designed GON-DBCO-DOX provided a safe and efficient drug delivery system to actively target the anticancer agents. 10.1016/j.ijpharm.2018.04.047
    Utilization of a fattigation platform gelatin-oleic acid sodium salt conjugate as a novel solubilizing adjuvant for poorly water-soluble drugs via self-assembly and nanonization. Kim Dayoung,Park Chulhun,Meghani Nileshkumar M,Tran Thao T D,Tran Phuong H L,Park Jun-Bom,Lee Beom-Jin International journal of pharmaceutics Solubilizing adjuvants are commonly used to dissolve insoluble drugs by simply adding in a formulation. In this study, gelatin and oleic acid sodium salt (OAS), a generally recognized as safe-listed material were chosen and conjugated to develop a natural solubilizing adjuvant using the fattigation platform technology to enhance solubility and dissolution rate of poorly water-soluble drugs according to self-assembly and nanonization principle when simply mixed with poorly water-soluble drugs. We synthesized the gelatin and OAS conjugates (GOC) at three different ratios (1:1, 1:3, 1:5; GOC 1, GOC 2, and GOC 3, respectively) via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide reaction using a spray dryer. This amphiphilic micronized GOC was self-assembled into nanoparticles. The synthesis of new amphiphilic conjugates was identified through Fourier transform-infrared (FT-IR) spectroscopy. The powder properties of the GOCs, such as angle of repose, bulk density, and tapped density were varied with the oleic acid bonding ratio. Then, GOCs were utilized to investigate the enhanced solubility and release rate of various poorly water-soluble drugs such as cilostazol (CSZ), coenzyme Q10, ticagrelor, telmisartan, aprepitant and itraconazole as model drugs. Based on the solubility studies by concentration and type of GOCs, 3% GOC 2 was selected. When this GOC was mixed with these model drugs by the physical mixing, wetting and hot melting methoods, the solubility was highly enhanced compared to the pure control drug, ranging from 20 to 150,000 times. In case of CSZ, all formulations were significantly improved release rate compared to the of CSZ alone and the reference tablet, cilostan® (Korea United Pharm) in simulated intestinal fluid containing 0.2% sodium lauryl sulfate. Differential scanning calorimetry and powder X-ray diffraction were conducted to confirm the crystal polymorphic structure of CSZ, and as a result they changed to diminutive peak intensity compared to CSZ alone. Field-emission scanning electron microscopy indicated that GOC was round with a reduced size of about 100 nm. The reduction of drug particles via nanonization and self-assembly of amphiphilic GOC in an aqueous media could be a key factor to improve poor water solubility by providing a favorable dispersion of drug molecules in an amphiphilic network. 10.1016/j.ijpharm.2019.118892