加载中

    Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Reddy J K,Hashimoto T Annual review of nutrition beta-Oxidation occurs in both mitochondria and peroxisomes. Mitochondria catalyze the beta-oxidation of the bulk of short-, medium-, and long-chain fatty acids derived from diet, and this pathway constitutes the major process by which fatty acids are oxidized to generate energy. Peroxisomes are involved in the beta-oxidation chain shortening of long-chain and very-long-chain fatty acyl-coenzyme (CoAs), long-chain dicarboxylyl-CoAs, the CoA esters of eicosanoids, 2-methyl-branched fatty acyl-CoAs, and the CoA esters of the bile acid intermediates di- and trihydroxycoprostanoic acids, and in the process they generate H2O2. Long-chain and very-long-chain fatty acids (VLCFAs) are also metabolized by the cytochrome P450 CYP4A omega-oxidation system to dicarboxylic acids that serve as substrates for peroxisomal beta-oxidation. The peroxisomal beta-oxidation system consists of (a) a classical peroxisome proliferator-inducible pathway capable of catalyzing straight-chain acyl-CoAs by fatty acyl-CoA oxidase, L-bifunctional protein, and thiolase, and (b) a second noninducible pathway catalyzing the oxidation of 2-methyl-branched fatty acyl-CoAs by branched-chain acyl-CoA oxidase (pristanoyl-CoA oxidase/trihydroxycoprostanoyl-CoA oxidase), D-bifunctional protein, and sterol carrier protein (SCP)x. The genes encoding the classical beta-oxidation pathway in liver are transcriptionally regulated by peroxisome proliferator-activated receptor alpha (PPAR alpha). Evidence derived from mice deficient in PPAR alpha, peroxisomal fatty acyl-CoA oxidase, and some of the other enzymes of the two peroxisomal beta-oxidation pathways points to the critical importance of PPAR alpha and of the classical peroxisomal fatty acyl-CoA oxidase in energy metabolism, and in the development of hepatic steatosis, steatohepatitis, and liver cancer. 10.1146/annurev.nutr.21.1.193
    Role of the CYP4A/20-HETE pathway in vascular dysfunction of the Dahl salt-sensitive rat. Lukaszewicz Kathleen M,Lombard Julian H Clinical science (London, England : 1979) 20-HETE (20-hydroxyeicosatetraenoic acid), a vasoconstrictor metabolite of arachidonic acid formed through the action of CYP4A (cytochrome P450-4A) in vascular smooth muscle cells, has been implicated in the development of hypertension and vascular dysfunction. There have been a number of reports in human subjects demonstrating an association between elevated urinary excretion of 20-HETE and hypertension, as well as increased 20-HETE production and vascular dysfunction. The Dahl SS (salt-sensitive) rat is a genetic model of salt-sensitive hypertension that exhibits vascular dysfunction, even when maintained on a normal-salt diet and before the development of hypertension. This mini-review highlights our current research on the role of CYP4A and 20-HETE in the vascular dysfunction of the Dahl SS rat. In our studies, the SS rat is compared with the consomic SS-5BN rat, having chromosome 5 from the salt-resistant Brown Norway rat (carrying all CYP4A genes) introgressed on to the SS genetic background. Our laboratory has demonstrated restoration of normal vascular function in the SS rat with inhibition of the CYP4A/20-HETE pathway, suggesting a direct role for this pathway in the vascular dysfunction in this animal model. Our studies have also shown that the SS rat has an up-regulated CYP4A/20-HETE pathway within their cerebral vasculature compared with the SS-5BN consomic rat, which causes endothelial dysfunction through the production of ROS (reactive oxygen species). Our data shows that ROS influences the expression of the CYP4A/20-HETE pathway in the SS rat in a feed-forward mechanism whereby elevated ROS stimulates production of 20-HETE. The presence of this vicious cycle offers a possible explanation for the spiralling effects of elevated 20-HETE on the development of vascular dysfunction in this animal model. 10.1042/CS20120483
    Inhibition of CYP4A reduces hepatic endoplasmic reticulum stress and features of diabetes in mice. Park Edmond Changkyun,Kim Seung Il,Hong Yeonhee,Hwang Jeong Won,Cho Gun-Sik,Cha Hye-Na,Han Jin-Kwan,Yun Chul-Ho,Park So-Young,Jang Ik-Soon,Lee Zee-Won,Choi Jong-Soon,Kim Soohyun,Kim Gun-Hwa Gastroenterology BACKGROUND & AIMS:Endoplasmic reticulum (ER) stress is implicated in the development of type 2 diabetes mellitus. ER stress activates the unfolded protein response pathway, which contributes to apoptosis and insulin resistance. We investigated the roles of cytochrome P450 4A (CYP4A) in the regulation of hepatic ER stress, insulin resistance, and the development of diabetes in mice. METHODS:We used mass spectrometry to compare levels of CYP450 proteins in livers from C57BL/6J and C57BL/KsJ-db/db (db/db) mice; findings were confirmed by immunoblot and real-time PCR analyses. To create a model of diet-induced diabetes, C57BL/6J mice were placed on high-fat diets. Mice were given intraperitoneal injections of an inhibitor (HET0016) or an inducer (clofibrate) of CYP4A, or tail injections of small hairpin RNAs against CYP4A messenger RNA; liver tissues were collected and analyzed for ER stress, insulin resistance, and apoptosis. The effect of HET0016 and CYP4A knockdown also were analyzed in HepG2 cells. RESULTS:Levels of the CYP4A isoforms were highly up-regulated in livers of db/db mice compared with C57BL/6J mice. Inhibition of CYP4A in db/db and mice on high-fat diets reduced features of diabetes such as insulin hypersecretion, hepatic steatosis, and increased glucose tolerance. CYP4A inhibition reduced levels of ER stress, insulin resistance, and apoptosis in the livers of diabetic mice; it also restored hepatic functions. Inversely, induction of CYP4A accelerated ER stress, insulin resistance, and apoptosis in livers of db/db mice. CONCLUSIONS:CYP4A proteins are up-regulated in livers of mice with genetically induced and diet-induced diabetes. Inhibition of CYP4A in mice reduces hepatic ER stress, apoptosis, insulin resistance, and steatosis. Strategies to reduce levels or activity of CYP4A proteins in liver might be developed for treatment of patients with type 2 diabetes. 10.1053/j.gastro.2014.06.039
    Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. Wang Chenlong,Chen Yaxin,Wang Yang,Liu Xiaoxiao,Liu Yanzhuo,Li Ying,Chen Honglei,Fan Chengpeng,Wu Dongfang,Yang Jing Journal of experimental & clinical cancer research : CR BACKGROUND:Arachidonic acid (AA) metabolic enzymes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1) and cytochrome P450 (CYP) 4A11 play important roles in glioma angiogenesis. Thus, there is an urgent need to identify the underlying mechanisms and develop strategies to overcome them. METHODS:A homology model of human CYP4A11 was constructed using SYBYL-X 2.0. Structure-based virtual screening against COX-2, mPGES-1 and CYP4A11was performed using the Surflex-Dock of the SYBYL suite. The candidates were further evaluated their antiangiogenic activities in a zebrafish embryo and rabbit corneal angiogenesis model. Laser doppler analysis was used to measure tumor perfusion. The expression of CD31 and α-SMA was measured by immunofluorescence. Western blot was used to measure the expression of HIF-1, Akt and p-Akt. The gene expression of FGF-2, G-CSF, PDGF, TGF-β, Tie-2, VEGF, lncRNA NEAT1 and miR-194-5p were determined using qPCR. The production of FGF-2, TGF-β and VEGF were analyzed using ELISA. Bioinformatic analysis and luciferase reporter assays confirmed the interaction between lncRNA NEAT1 and miR-194-5p. RESULTS:The nearly 36,043 compounds from the Traditional Chinese Medicine (TCM) database were screened against COX-2, mPGES-1 and CYP4A11 3D models, and the 17 top flavonoids were identified. In zebrafish screening, isoliquiritigenin (ISL) exhibited the most potent antiangiogenic activities with the EC values of 5.9 μM. Conversely, the antiangiogenic effects of ISL in the zebrafish and rabbit corneal models were partly reversed by 20-hydroxyeicosatetraenoic acid (20-HETE) or prostaglandin E2 (PGE). ISL normalized glioma vasculature and improved the efficacy of temozolomide therapy in the rat C6 glioma model. Inhibition of COX-2, mPGES-1 and CYP4A by ISL decreased FGF-2, TGF-β and VEGF production in the C6 and U87 glioma cells with p-Akt downregulation, which was reversed by Akt overexpression. Furthermore, ISL downregulated lncRNA NEAT1 but upregulated miR-194-5p in the U87 glioma cell. Importantly, lncRNA NEAT1 overexpression reversed ISL-mediated increase in miR-194-5p expression, and thereby attenuated FGF-2, TGF-β and VEGF production. CONCLUSIONS:Reprogramming COX-2, mPGES-1 and CYP4A mediated-AA metabolism in glioma by flavonoid ISL inhibits the angiogenic Akt- FGF-2/TGF-β/VEGF signaling through ceRNA effect of miR-194-5p and lncRNA NEAT1, and may serve as a novel therapeutic strategy for human glioma. 10.1186/s13046-019-1361-2