加载中

    Electrochemical treatment of pharmaceutical wastewater through electrosynthesis of iron hydroxides for practical removal of metronidazole. Ahmadzadeh Saeid,Dolatabadi Maryam Chemosphere Antibiotics as the severe contaminants of aqueous environments were received growing attention during the last decades. The current work is the first report on investigating the potency and efficiency of electrocoagulation process in the successful removal of metronidazole (MNZ) from pharmaceutical wastewater using response surface methodology based on central composite design. The applied method by optimizing the independent and combined effects of significant variables which affecting the EC process enhanced the removal efficiency of MNZ. Analysis of variance was applied to verify the significance of independent variables solely and their interactions. The best removal efficiency of 100% found under the optimal operating condition of initial MNZ concentration 21.6 mg L, pH 8.2, current density 6.0 mA cm, inter-electrode distance 3 cm, and reaction time of 14.6 min. Isotherm investigations revealed that the Langmuir model with the R of 0.994 best fitted to the obtained experimental equilibrium results. The fast adsorption of MNZ on the surface of Fe(OH) and [Fe(OH)] with the equilibrium time of 15 min confirmed that the kinetics of the electrocoagulation process follow the pseudo-second-order model (R = 0.962). The electrocoagulation process under the optimal operating condition revealed that the electrical energy consumption per each m of treated pharmaceutical wastewater, per each g of MNZ, removed, and per each kg of Fe electrode consumed, were found to be 0.516 kWh m, 0.0234 kWh g, and 0.0436 kWh kg, respectively. 10.1016/j.chemosphere.2018.08.107
    Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara. Zhu Liming,Xu Houtao,Xiao Wensheng,Lu Jianke,Lu Di,Chen Xiaoyu,Zheng Xiaoyan,Jeppesen Erik,Zhang Wei,Wang Liqing Water research The extensive application of sulfonamides (SAs) raises concern regarding its negative environmental effects. In aquatic environments, macrophytes may not only be affected by various pollutants, they may also help to reduce the concentrations in the surrounding environment. We studied both the ecotoxicological effects of sulfonamide (SN) on and its removal by Vallisneria natans (Lour.) Hara, an important submerged macrophyte in Chinese lakes and rivers. The toxic effect and oxidative stress caused by SN resulted in a reduction of total chlorophyll (chl.a and b) and autofluorescence of chloroplast. Meanwhile, the levels of reactive oxygen species (ROS, including O and HO) and peroxidase (POD) increased with increasing SN concentration and duration of exposure. After 20 days' exposure, a reduction in the relative growth rate (RGR) and leaf length of V. natans was found under SN stress, but SN had only a weak effect on root length. Although high SN concentrations had toxic effects on the growth of V. natans, the plant was overall resistant to the SN doses that we used. We studied the effect of V. natans on sulfonamide removal in an additional 13-day exposure experiment with focus on the dynamics of dissolved oxygen (DO), the oxidation-reduction potential (ORP) and microbial communities in the water column, as well as in the periphyton on V. natans surfaces. The results show that presence of V. natans significantly improved the SN removal efficiency likely by increasing DO, ORP and bacterial diversity in the water column. The presence of V. natans led to higher relative abundances of Saccharimonadales and Rhizoniales. Lefse analysis showed that Saccharimonadales, Micrococcales, Sphingobacteriales, Bacteroidales, Obscuribacterales, Flavobacteriales, Pseudomonadaceae and Myxococcales, which are considered to be SN-resistant bacteria, increased significantly in the V + S+ (V. natans and SN) treatment compared with the V + S- (V. natans and no SN) treatment and V-S+ (no V. natans and SN) treatment. As far as we know, ours is the first study of the ecotoxicological effects of sulfonamide and its removal by submerged vascular plants (here V. natans). Thus, our results add to the understanding of the antibiotic removal mechanism of macrophytes in freshwater systems and help to clarify the linkages between antibiotics and macrophyte-microbe systems; thereby providing new insight into ecological-based removal of antibiotics in aquatic systems. 10.1016/j.watres.2019.115354
    Mechanism of oxytetracycline removal by aerobic granular sludge in SBR. Wang Xiaochun,Shen Jimin,Kang Jing,Zhao Xia,Chen Zhonglin Water research In this study, oxytetracycline (OTC) as a target pollutant in swine wastewater was removed by aerobic granular sludge (AGS). The removal rate of 300 μg/L OTC in aerobic granular sludge sequencing batch reactor (AGSBR) increased to 88.00% in 33 days and maintained stable. The chemical oxygen demand (COD), ammonium nitrogen (NH-N) and total phosphorus (TP) in wastewater were also efficiently removed. The removal of OTC mainly depended on the adsorption and biodegradation of AGS, and the biodegradation was increased obviously after AGS adaptation to OTC. The degradation products of OTC were analyzed by mass spectrometry. The analysis of metagenome sequencing revealed that the enzymes, such as glycosyl transferases (GTs), polysaccharide lyases (PLs) and auxiliary activities (AAs), may play an important role in the removal of OTC. The Lefse analysis showed that the Flavobacteriia, Flavobacteriales, Cryomorphaceae and Fluviicola were four kinds of microbes with significant difference in OTC feed reactor, which are considered to be drug-resistant bacteria in AGSBR. Furthermore, the dynamics of microbial community changed significantly at three levels, including the enrichment of drug-resistant microorganisms and the microorganisms that gradually reduced or even disappeared under the pressure of OTC. 10.1016/j.watres.2019.06.014
    Enhanced photocatalytic degradation of sulfamethoxazole by zinc oxide photocatalyst in the presence of fluoride ions: Optimization of parameters and toxicological evaluation. Mirzaei Amir,Yerushalmi Laleh,Chen Zhi,Haghighat Fariborz,Guo Jianbo Water research The presence of antibiotics in water bodies has received increasing attention since they are continuously introduced and detected in the environment and may cause unpredictable environmental hazards and risks. The photocatalytic degradation of sulfamethoxazole (SMX) by ZnO in the presence of fluoride ions (F-ZnO) was evaluated. The effects of operating parameters on the efficiency of SMX removal were investigated by using response surface methodology (RSM). Under the optimum condition, i.e. photocatalyst dosage = 1.48 g/L, pH 4.7, airflow rate = 2.5 L/min and the concentration of fluoride ions = 2.505 mM, about 97% SMX removal was achieved by F-ZnO after 30 min of reaction. The mechanism of reactions, COD removal efficiency and reaction kinetics were also investigated under optimum operating conditions. In addition, about 85% COD reduction was obtained after 90 min photocatalytic reaction. The pseudo-first-order kinetics rate constants for the photodegradation of SMX were found to be 0.099, 0.058 and 0.048 min by F-ZnO, ZnO and TiO (P25), respectively. The figure-of-merit electrical energy per order (E) was used for estimating the electrical energy efficiency, which was shown to be considerably lower than the energy consumption for the reported research on removal of SMX by photocatalytic degradation under UV irradiation. Toxicity assays were conducted by measuring the inhibition percentage (PI) towards E. coli bacteria strain and by agar well diffusion method. The results showed that after 30 min of reaction, the toxicity of the treated solutions by all photocatalysts fell within the non-toxic range; however, the reduction in toxicity by F-ZnO was faster than those by ZnO and P25. Despite the positive effects of surface fluorination of ZnO on the SMX and COD removal and reaction kinetics, its lower stability compared to ZnO and P25 in the repeated experiments gave rise to some doubts about its performance from a practical point of view. 10.1016/j.watres.2018.01.016
    Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms. He Jianzhou,Zhang Yaozhong,Guo Yang,Rhodes Geoff,Yeom Junghoon,Li Hui,Zhang Wei Environment international Increasing concentrations of anthropogenic antibiotics and their metabolites in aqueous environments has caused growing concerns over the proliferation of antibiotic resistance and potential adverse impacts to agro-environmental quality and human health. Photocatalysis using novel engineered nanomaterials such as ZnO nanowires may be promising for removing antibiotics from waters. However, much remains to be learned about efficiency and mechanism for photocatalytic degradation of antibiotics by ZnO nanowires. This study systematically investigated photodegradation of cephalexin using ZnO nanowires under simulated sunlight. The degradation efficiency of cephalexin was substantially increased in the presence of ZnO nanowires especially at circumneutral and alkaline condition (solution pH of 7.2-9.2). The photodegradation followed the first-order kinetics with degradation rate constants (k) ranging between 1.19 × 10 and 2.52 × 10 min at 20-80 mg L ZnO nanowires. Radical trapping experiments demonstrated that hydroxyl radicals (OH) and superoxide radicals (O) predominantly contributed to the removal of cephalexin. With the addition of HCO (1-5 mM) or Suwannee River natural organic matter (SRNOM, 2-10 mg L), the k values were substantially decreased by a factor of 1.8-70 to 1.69 × 10-6.67 × 10 min, probably due to screening effect of HCO or SRNOM sorbed on ZnO nanowires and scavenging of free radicals by free HCO or SRNOM in solution. Combining product identification by mass spectrometry and molecular computation, cephalexin photodegradation pathways were identified, including hydroxylation, demethylation, decarboxylation, and dealkylation. Overall, the novel ZnO nanowires have the potential to be used for removing antibiotics from contaminated waters. 10.1016/j.envint.2019.105105
    Removal of extracellular free DNA and antibiotic resistance genes from water and wastewater by membranes ranging from microfiltration to reverse osmosis. Slipko Katarzyna,Reif Daniela,Wögerbauer Markus,Hufnagl Peter,Krampe Jörg,Kreuzinger Norbert Water research Free DNA in the effluent from wastewater treatment plants has recently been observed to contain antibiotic resistance genes (ARGs), which may contribute to the spread of antibiotic resistance via horizontal gene transfer in the receiving environment. Technical membrane systems applied in wastewater and drinking water treatment are situated at central nodes between the environmental and human related aspects of the "One Health" approach and are considered as effective barriers for antibiotic resistant bacteria. However, they are not evaluated for their permeability for ARGs encoded in free DNA, which may result, for example, from the release of free DNA after bacterial die-off during particular treatment processes. This study examined the potential and principle mechanisms for the removal of free DNA containing ARGs by technical membrane filtration. Ten different membranes, varied by the charge (neutral and negative) and the molecular weight cut off (in a range from microfiltration to reverse osmosis), were tested for the removal of free DNA (pure supercoiled and linearized plasmids encoding for ARGs and free linear chromosomal DNA with a broader fragment size spectrum) in different water matrices (distilled water and wastewater treatment plant effluent). Our results showed that membranes with a molecular weight cut off smaller than 5000 Da (ultrafiltration, nanofiltration and reverse osmosis) could retain ≥99.80% of free DNA, both pure plasmid and linear fragments of different sizes, whereas microfiltration commonly applied in wastewater treatment showed no retention. Size exclusion was identified as the main retention mechanism. Additionally, surface charging of the membrane and adsorption of free DNA on the membrane surface played a key role in prevention of free DNA permeation. Currently, majority of the applied membranes is negatively charged to prevent adsorption of natural organic matter. In our study, negatively charged membranes showed lower retention of free DNA compared to neutral ones due to repulsion of free DNA molecules, reduced adsorption and decreased blockage of the membrane surface. Therefore, the applied membrane may not be as an effective barrier for ARGs encoded in free DNA, as it would be predicted based only on the molecular weight cut off. Thus, careful considerations of membrane's specifications (molecular weight cut-off and charge) are required during design of a filtration system for retention of free DNA. 10.1016/j.watres.2019.114916
    Antimicrobial Resistance and Bacteriophages: An Overlooked Intersection in Water Disinfection. Maganha de Almeida Kumlien Ana Carolina,Borrego Carles M,Balcázar José Luis Trends in microbiology This article focuses on how bacteriophages (phages), antibiotic-resistance genes (ARGs), and disinfection practices intersect. Phages are considered to be the most abundant biological entities on Earth and they have the potential to transfer genes (including ARGs) among their bacterial hosts. In the urban water cycle, phages are used as indicators of fecal pollution and surrogates for human viral pathogens but they are also known to withstand common disinfection treatments deployed to produce safe drinking/reclaimed water. Recent studies also suggest that phages have the potential to become an additional footprint to monitor water safety. A precautionary approach should therefore include phages in surveillance programs aimed at monitoring antimicrobial resistance (AMR) in the urban water cycle. This article argues that phages ought to be used to assess the efficiency of disinfection treatments (both classical and novel) on reducing the risk associated with antibiotic resistance. Finally, this article discusses contributions to the advancement of AMR stewardship in aquatic settings and is relevant for researchers and water industry practitioners. 10.1016/j.tim.2020.12.011
    Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Wang Bin,Lv Xiu-Liang,Feng Dawei,Xie Lin-Hua,Zhang Jian,Li Ming,Xie Yabo,Li Jian-Rong,Zhou Hong-Cai Journal of the American Chemical Society Antibiotics and organic explosives are among the main organic pollutants in wastewater; their detection and removal are quite important but challenging. As a new class of porous materials, metal-organic frameworks (MOFs) are considered as a promising platform for the sensing and adsorption applications. In this work, guided by a topological design approach, two stable isostructural Zr(IV)-based MOFs, Zr6O4(OH)8(H2O)4(CTTA)8/3 (BUT-12, H3CTTA = 5'-(4-carboxyphenyl)-2',4',6'-trimethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid) and Zr6O4(OH)8(H2O)4(TTNA)8/3 (BUT-13, H3TTNA = 6,6',6″-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2-naphthoic acid)) with the the-a topological structure constructed by D4h 8-connected Zr6 clusters and D3h 3-connected linkers were designed and synthesized. The two MOFs are highly porous with the Brunauer-Emmett-Teller surface area of 3387 and 3948 m(2) g(-1), respectively. Particularly, BUT-13 features one of the most porous water-stable MOFs reported so far. Interestingly, these MOFs represent excellent fluorescent properties, which can be efficiently quenched by trace amounts of nitrofurazone (NZF) and nitrofurantoin (NFT) antibiotics as well as 2,4,6-trinitrophenol (TNP) and 4-nitrophenol (4-NP) organic explosives in water solution. They are responsive to NZF and TNP at parts per billion (ppb) levels, which are among the best performing luminescent MOF-based sensing materials. Simultaneously, both MOFs also display high adsorption abilities toward these organic molecules. It was demonstrated that the adsorption plays an important role in the preconcentration of analytes, which can further increase the fluorescent quenching efficiency. These results indicate that BUT-12 and -13 are favorable materials for the simultaneous selective detection and removal of specific antibiotics and organic explosives from water, being potentially useful in monitoring water quality and treating wastewater. 10.1021/jacs.6b01663
    Enhanced Strategies for Antibiotic Removal from Swine Wastewater in Anaerobic Digestion. Zhou Qi,Li Xiang,Wu Shaohua,Zhong Yuanyuan,Yang Chunping Trends in biotechnology There is a need for techniques that ensure antibiotic removal in anaerobic digesters for robust methane production. In this article, we discuss recent strategies for enhanced antibiotic removal from swine wastewater and offer insights on anaerobic digestion (AD) process design for improved antibiotic removal. 10.1016/j.tibtech.2020.07.002
    Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination. Li Bing,Zhang Tong Water research The chlorination behaviours of 12 antibiotics belonging to six classes at environmentally relevant concentrations were systematically examined under typical conditions relevant to municipal wastewater chlorination. Cefotaxime, cefalexin, ampicillin and tetracycline were completely removed under all three initial free chlorine dosages (5 mg/L, 10 mg/L, and 15 mg/L). The removal efficiencies of sulphamethoxazole, sulphadiazine, roxithromycin, anhydro-erythromycin, ofloxacin, and trimethoprim were closely correlated to the residual free chlorine concentration, and no further significant mass removal was observed after the residual free chlorine concentration decreased to less than ≈ 0.75 mg/L. Ammonia plays a critical role during chlorination because of its competition with antibiotics for free chlorine to form combined chlorine, which reacts slowly with these antibiotics. Except for norfloxacin and ciprofloxacin, the removal behaviours of the 10 other target antibiotics under ammonia nitrogen concentrations ranging from 2 to 15 mg/L were characterised by a rapid initial removal rate upon contact with free chlorine during the first 5 s-1 min (depending on the specific antibiotic and ammonia nitrogen concentration) and then a much slower removal rate. Free chlorine was responsible for the reaction with antibiotics during the rapid stage (first 5 s-1 min), whereas combined chlorine reacted with antibiotics in the subsequent slow stage. Combined chlorine can remove norfloxacin and ciprofloxacin at a relatively faster rate. The presence of suspended solids at 30 mg/L slightly decreased the antibiotic removal rate. The kinetic rate constants decreased by 2.1-13.9%, while the half-lives increased by 2.0-15.0% compared to those of a 0 mg/L suspended solid for the target antibiotics. 10.1016/j.watres.2013.03.001
    Highly Stable Zinc-Based Metal-Organic Frameworks and Corresponding Flexible Composites for Removal and Detection of Antibiotics in Water. Gai Shuang,Zhang Jian,Fan Ruiqing,Xing Kai,Chen Wei,Zhu Ke,Zheng Xubin,Wang Ping,Fang Xikui,Yang Yulin ACS applied materials & interfaces Antibiotic contamination of water bodies is a major environmental concern. Exposure to superfluous antibiotics is an ecological stressor correlated to the development of antibiotic resistance. Thus, it is imperative that effective methods are developed to simultaneously detect and remove such antibiotics so as to avoid inadvertent release. Herein, two flexible three-dimensional (3D) zinc-based metal-organic frameworks (MOFs) {[Zn(bcob)(OH)(HO)]·DMA} () and {[Zn(Hbcob)]·(solvent)} () (Hbcob = 1,3-bis((4'-carboxylbenzyl)oxy)benzoic acid) with rod second building units (SBUs) are successfully prepared. Their exceptional water and chemical stabilities (toward both acid and base), fast sorption kinetics, and unique framework endow the MOFs with excellent uptake capacity toward various antibiotics in the aqueous environment. The adsorption performance was further optimized by one-pot preparation of MOF-melamine foam (MF) hybrid composites, resulting in a hierarchical microporous-macroporous MOF@MF system (@MF and @MF), which are readily recyclable after adsorptive capture. The mechanisms of adsorption have been deeply investigated by static and competitive adsorption experiments. In addition, the MOFs exhibit excellent fluorescent properties and quenched by trace amounts of antibiotics in water solution. Therefore, and present a dual-functional performance, being promising candidates for detection and removal of antibiotics. 10.1021/acsami.9b19583