Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Asher Gad,Reinke Hans,Altmeyer Matthias,Gutierrez-Arcelus Maria,Hottiger Michael O,Schibler Ueli Cell Circadian clocks in peripheral organs are tightly coupled to cellular metabolism and are readily entrained by feeding-fasting cycles. However, the molecular mechanisms involved are largely unknown. Here we show that in liver the activity of PARP-1, an NAD(+)-dependent ADP-ribosyltransferase, oscillates in a daily manner and is regulated by feeding. We provide biochemical evidence that PARP-1 binds and poly(ADP-ribosyl)ates CLOCK at the beginning of the light phase. The loss of PARP-1 enhances the binding of CLOCK-BMAL1 to DNA and leads to a phase-shift of the interaction of CLOCK-BMAL1 with PER and CRY repressor proteins. As a consequence, CLOCK-BMAL1-dependent gene expression is altered in PARP-1-deficient mice, in particular in response to changes in feeding times. Our results show that Parp-1 knockout mice exhibit impaired food entrainment of peripheral circadian clocks and support a role for PARP-1 in connecting feeding with the mammalian timing system. 10.1016/j.cell.2010.08.016
    Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Lu Xiao-Yi,Shi Xiong-Jie,Hu Ao,Wang Ju-Qiong,Ding Yi,Jiang Wei,Sun Ming,Zhao Xiaolu,Luo Jie,Qi Wei,Song Bao-Liang Nature Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes. 10.1038/s41586-020-2928-y
    SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Shimazu Tadahiro,Hirschey Matthew D,Hua Lan,Dittenhafer-Reed Kristin E,Schwer Bjoern,Lombard David B,Li Yu,Bunkenborg Jakob,Alt Frederick W,Denu John M,Jacobson Matthew P,Verdin Eric Cell metabolism The mitochondrial sirtuin SIRT3 regulates metabolic homeostasis during fasting and calorie restriction. We identified mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) as an acetylated protein and a possible target of SIRT3 in a proteomics survey in hepatic mitochondria from Sirt3(-/-) (SIRT3KO) mice. HMGCS2 is the rate-limiting step in β-hydroxybutyrate synthesis and is hyperacetylated at lysines 310, 447, and 473 in the absence of SIRT3. HMGCS2 is deacetylated by SIRT3 in response to fasting in wild-type mice, but not in SIRT3KO mice. HMGCS2 is deacetylated in vitro when incubated with SIRT3 and in vivo by overexpression of SIRT3. Deacetylation of HMGCS2 lysines 310, 447, and 473 by incubation with wild-type SIRT3 or by mutation to arginine enhances its enzymatic activity. Molecular dynamics simulations show that in silico deacetylation of these three lysines causes conformational changes of HMGCS2 near the active site. Mice lacking SIRT3 show decreased β-hydroxybutyrate levels during fasting. Our findings show SIRT3 regulates ketone body production during fasting and provide molecular insight into how protein acetylation can regulate enzymatic activity. 10.1016/j.cmet.2010.11.003
    Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Wolfrum Christian,Asilmaz Esra,Luca Edlira,Friedman Jeffrey M,Stoffel Markus Nature The regulation of fat and glucose metabolism in the liver is controlled primarily by insulin and glucagon. Changes in the circulating concentrations of these hormones signal fed or starvation states and elicit counter-regulatory responses that maintain normoglycaemia. Here we show that in normal mice, plasma insulin inhibits the forkhead transcription factor Foxa2 by nuclear exclusion and that in the fasted (low insulin) state Foxa2 activates transcriptional programmes of lipid metabolism and ketogenesis. In insulin-resistant or hyperinsulinaemic mice, Foxa2 is inactive and permanently located in the cytoplasm of hepatocytes. In these mice, adenoviral expression of Foxa2T156A, a nuclear, constitutively active Foxa2 that cannot be inhibited by insulin, decreases hepatic triglyceride content, increases hepatic insulin sensitivity, reduces glucose production, normalizes plasma glucose and significantly lowers plasma insulin. These changes are associated with increased expression of genes encoding enzymes of fatty acid oxidation, ketogenesis and glycolysis. Chronic hyperinsulinaemia in insulin-resistant syndromes results in the cytoplasmic localization and inactivation of Foxa2, thereby promoting lipid accumulation and insulin resistance in the liver. Pharmacological intervention to inhibit phosphorylation of Foxa2 may be an effective treatment for type 2 diabetes. 10.1038/nature03047
    PPARα-Target Gene Expression Requires TIS21 Gene in Liver of the C57BL/6 Mice under Fasting Condition. Hong Allen Eugene,Ryu Min Sook,Kim Seung Jun,Hwang Seung Yong,Lim In Kyoung Molecules and cells The TIS21 gene belongs to the antiproliferative gene (APRO) family and exhibits tumor suppressive activity. However, here we report that TIS21 controls lipid metabolism, rather than cell proliferation, under fasting condition. Using microarray analysis, whole gene expression changes were investigated in liver of TIS21 knockout (TIS21-KO) mice after 20 h fasting and compared with wild type (WT). Peroxisome proliferator-activated receptor alpha (PPARα) target gene expression was almost absent in contrast to increased lipid synthesis in the TIS21-KO mice compared to WT mice. Immunohistochemistry with hematoxylin and eosin staining revealed that lipid deposition was focal in the TIS21-KO liver as opposed to the diffuse and homogeneous pattern in the WT liver after 24 h starvation. In addition, cathepsin E expression was over 10 times higher in the TIS21-KO liver than that in the WT, as opposed to the significant reduction of thioltransferase in both adult and fetal livers. At present, we cannot account for the role of cathepsin E. However, downregulation of glutaredoxin 2 thioltransferase expression might affect hypoxic damage in the TIS21-KO liver. We suggest that the TIS21 gene might be essential to maintain energy metabolism and reducing power in the liver under fasting condition. 10.14348/molcells.2018.2257
    Fasting for 21days leads to changes in adipose tissue and liver physiology in juvenile checkered garter snakes (Thamnophis marcianus). Davis Mary,Jessee Renee,Close Matthew,Fu Xiangping,Settlage Robert,Wang Guoqing,Cline Mark A,Gilbert Elizabeth R Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Snakes often undergo periods of prolonged fasting and, under certain conditions, can survive years without food. Despite this unique phenomenon, there are relatively few reports of the physiological adaptations to fasting in snakes. At post-prandial day 1 (fed) or 21 (fasting), brain, liver, and adipose tissues were collected from juvenile checkered garter snakes (Thamnophis marcianus). There was greater glycerol-3-phosphate dehydrogenase (G3PDH)-specific activity in the liver of fasted than fed snakes (P=0.01). The mRNA abundance of various fat metabolism-associated factors was measured in brain, liver, and adipose tissue. Lipoprotein lipase (LPL) mRNA was greater in fasted than fed snakes in the brain (P=0.04). Adipose triglyceride lipase (ATGL; P=0.006) mRNA was greater in the liver of fasted than fed snakes. In adipose tissue, expression of peroxisome proliferator-activated receptor (PPAR)γ (P=0.01), and fatty acid binding protein 4 (P=0.03) was greater in fed than fasted snakes. Analysis of adipocyte morphology revealed that cross-sectional area (P=0.095) and diameter (P=0.27) were not significantly different between fed and fasted snakes. Results suggest that mean adipocyte area can be preserved during fasting by dampening lipid biosynthesis while not changing rates of lipid hydrolysis. In the liver, however, extensive lipid remodeling may provide energy and lipoproteins to maintain lipid structural integrity during energy restriction. Because the duration of fasting was not sufficient to change adipocyte size, results suggest that the liver is important as a short-term provider of energy in the snake. 10.1016/j.cbpa.2015.09.001
    Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction. Banerjee Subhashis,Ghoshal Sarbani,Stevens Joseph R,McCommis Kyle S,Gao Su,Castro-Sepulveda Mauricio,Mizgier Maria L,Girardet Clemence,Kumar K Ganesh,Galgani Jose E,Niehoff Michael L,Farr Susan A,Zhang Jinsong,Butler Andrew A The Journal of biological chemistry The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice. However, circadian rhythm data are inconsistent. In lean mice, caloric restriction (CR) induces bouts of compulsive binge feeding separated by prolonged fasting intervals, increasing NAD-dependent deacetylase sirtuin-1 signaling important for glucose and lipid metabolism regulation. CR up-regulates adropin expression and induces rhythms correlating with cellular stress-response pathways. Furthermore, adropin expression correlates positively with phosphoenolpyruvate carboxokinase-1 () expression, suggesting a link with gluconeogenesis. Our previous data suggest that adropin suppresses gluconeogenesis in hepatocytes. Liver-specific adropin knockout (LAdrKO) mice exhibit increased glucose excursions following pyruvate injections, indicating increased gluconeogenesis. Gluconeogenesis is also increased in primary cultured hepatocytes derived from LAdrKO mice. Analysis of circulating insulin levels and liver expression of fasting-responsive cAMP-dependent protein kinase A (PKA) signaling pathways also suggests enhanced responses in LAdrKO mice during a glucagon tolerance test (250 µg/kg intraperitoneally). Fasting-associated changes in PKA signaling are attenuated in transgenic mice constitutively expressing adropin and in fasting mice treated acutely with adropin peptide. In summary, hepatic adropin expression is regulated by nutrient- and clock-dependent extrahepatic signals. CR induces pronounced postprandial peaks in hepatic adropin expression. Rhythms of hepatic adropin expression appear to link energy balance and cellular stress to the intracellular signal transduction pathways that drive the liver fasting response. 10.1074/jbc.RA120.014381