加载中

    MicroRNA Biogenesis is Enhanced by Liposome-Encapsulated Pin1 Inhibitor in Hepatocellular Carcinoma. Sun Dan,Tan Shuangyan,Xiong Yanli,Pu Wenchen,Li Jiao,Wei Wei,Huang Canhua,Wei Yu-Quan,Peng Yong Theranostics Hepatocellular carcinoma (HCC) is in an urgent need of new, effective therapies to reduce morbidity and mortality. We have previously demonstrated that peptidyl-prolyl cis/trans isomerase Pin1 is a potential target for HCC therapy, due to its pivotal role in HCC development through regulating miRNA biogenesis, and discovered the small molecule API-1 as a novel and specific Pin1 inhibitor. Despite its significant anti-HCC activity, the low water solubility and bioavailability of API-1 limit its clinical application. To address these issues, we herein developed a liposomal formulation of API-1 to improve API-1 delivery and enhance its anti-HCC efficacy. : We designed and developed a nanoscale liposomal formulation of API-1, named as API-LP. Subsequently, the mean diameter, polydispersity, zeta potential, encapsulation efficiency and thermal properties of the optimization API-LP were characterized. The enhanced anti-HCC activity and the molecular mechanism of API-LP were investigated both and . Finally, the safety and pharmacokinetic property of API-LP were evaluated systematically. : API-LP had good formulation characteristics and exhibited an enhanced activity of suppressing proliferation and migration of HCC cells when compared with free API-1. The mechanism study showed that API-LP upregulated miRNA biogenesis via inhibiting Pin1 activity followed by restoring the nucleus-to-cytoplasm export of XPO5. Because of the increased delivery efficiency, API-LP displayed a stronger ability to promote miRNA biogenesis than free API-1. Importantly, API-LP displayed higher systemic exposure than free API-1 in mice without apparent toxicity, resulting in an enhanced tumor inhibition in xenograft mice. : The development and assessment of API-LP provide an attractive and safe anti-HCC agent, highlighting the miRNA-based treatment for human cancers. 10.7150/thno.34588
    Prolyl isomerase Pin1 in cancer. Lu Zhimin,Hunter Tony Cell research Proline-directed phosphorylation is a posttranslational modification that is instrumental in regulating signaling from the plasma membrane to the nucleus, and its dysregulation contributes to cancer development. Protein interacting with never in mitosis A1 (Pin1), which is overexpressed in many types of cancer, isomerizes specific phosphorylated Ser/Thr-Pro bonds in many substrate proteins, including glycolytic enzyme, protein kinases, protein phosphatases, methyltransferase, lipid kinase, ubiquitin E3 ligase, DNA endonuclease, RNA polymerase, and transcription activators and regulators. This Pin1-mediated isomerization alters the structures and activities of these proteins, thereby regulating cell metabolism, cell mobility, cell cycle progression, cell proliferation, cell survival, apoptosis and tumor development. 10.1038/cr.2014.109
    Pin1 induction in the fibrotic liver and its roles in TGF-β1 expression and Smad2/3 phosphorylation. Yang Jin Won,Hien Tran Thi,Lim Sung Chul,Jun Dae Won,Choi Hong Seok,Yoon Jung-Hoon,Cho Il Je,Kang Keon Wook Journal of hepatology BACKGROUND & AIMS:Therapeutic management of liver fibrosis remains an unsolved clinical problem. Hepatic accumulation of extracellular matrix, mainly collagen, is mediated by the production of transforming growth factor-β1 (TGF-β1) in stellate cells. Pin1, a peptidyl-prolyl isomerase, plays an important pathophysiological role in several diseases, including neurodegeneration and cancer. Herein, we determined whether Pin1 regulates liver fibrogenesis and examined its mechanism of action by focusing on TGF-β1 signalling and hepatic stellate cell (HSC) activation. METHODS:Pin1 expression was assessed by immunohistochemistry, Western blot or real-time-polymerase chain reaction (RT-PCR) analyses of human and mouse fibrotic liver samples. The role of Pin1 during HSC activation was estimated using Pin1-null mouse embryonic fibroblast (MEF) cells and Pin1-overexpressing LX-2 human hepatic stellate cells. RESULTS:Pin1 expression was elevated in human and mouse fibrotic liver tissues, and Pin1 inhibition improved dimethylnitrosamine (DMN)-induced liver fibrosis in mice. Pin1 inhibition reduced the mRNA or protein expression of TGF-β1 and α-smooth muscle actin (α-SMA) by DMN treatment. Pin1 knockdown suppressed TGFβ1 gene expression in both LX-2 and MEF cells. Pin1-mediated TGFβ1 gene transcription was controlled by extracellular signal-regulated kinase (ERK)- and phosphoinositide 3-kinase/Akt-mediated activator protein-1 (AP-1) activation. Moreover, TGFβ1-stimulated Smad2/3 phosphorylation and plasminogen activator inhibitor-1 expression were inhibited by Pin1 knockdown. CONCLUSIONS:Pin1 induction during liver fibrosis is involved in hepatic stellate cell activation, TGFβ1 expression, and TGFβ1-mediated fibrogenesis signalling. 10.1016/j.jhep.2014.02.004
    The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Zhou Xiao Zhen,Lu Kun Ping Nature reviews. Cancer Targeted drugs have changed cancer treatment but are often ineffective in the long term against solid tumours, largely because of the activation of heterogeneous oncogenic pathways. A central common signalling mechanism in many of these pathways is proline-directed phosphorylation, which is regulated by many kinases and phosphatases. The structure and function of these phosphorylated proteins are further controlled by a single proline isomerase: PIN1. PIN1 is overactivated in cancers and it promotes cancer and cancer stem cells by disrupting the balance of oncogenes and tumour suppressors. This Review discusses the roles of PIN1 in cancer and the potential of PIN1 inhibitors to restore this balance. 10.1038/nrc.2016.49
    Targeting Pin1 by inhibitor API-1 regulates microRNA biogenesis and suppresses hepatocellular carcinoma development. Pu Wenchen,Li Jiao,Zheng Yuanyuan,Shen Xianyan,Fan Xin,Zhou Jian-Kang,He Juan,Deng Yulan,Liu Xuesha,Wang Chun,Yang Shengyong,Chen Qiang,Liu Lunxu,Zhang Guolin,Wei Yu-Quan,Peng Yong Hepatology (Baltimore, Md.) Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, but there are few effective treatments. Aberrant microRNA (miRNA) biogenesis is correlated with HCC development. We previously demonstrated that peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) participates in miRNA biogenesis and is a potential HCC treatment target. However, how Pin1 modulates miRNA biogenesis remains obscure. Here, we present in vivo evidence that Pin1 overexpression is directly linked to the development of HCC. Administration with the Pin1 inhibitor (API-1), a specific small molecule targeting Pin1 peptidyl-prolyl isomerase domain and inhibiting Pin1 cis-trans isomerizing activity, suppresses in vitro cell proliferation and migration of HCC cells. But API-1-induced Pin1 inhibition is insensitive to HCC cells with low Pin1 expression and/or low exportin-5 (XPO5) phosphorylation. Mechanistically, Pin1 recognizes and isomerizes the phosphorylated serine-proline motif of phosphorylated XPO5 and passivates phosphorylated XPO5. Pin1 inhibition by API-1 maintains the active conformation of phosphorylated XPO5 and restores XPO5-driven precursor miRNA nuclear-to-cytoplasm export, activating anticancer miRNA biogenesis and leading to both in vitro HCC suppression and HCC suppression in xenograft mice. CONCLUSION:Experimental evidence suggests that Pin1 inhibition by API-1 up-regulates miRNA biogenesis by retaining active XPO5 conformation and suppresses HCC development, revealing the mechanism of Pin1-mediated miRNA biogenesis and unequivocally supporting API-1 as a drug candidate for HCC therapy, especially for Pin1-overexpressing, extracellular signal-regulated kinase-activated HCC. (Hepatology 2018). 10.1002/hep.29819
    A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action. Campaner Elena,Rustighi Alessandra,Zannini Alessandro,Cristiani Alberto,Piazza Silvano,Ciani Yari,Kalid Ori,Golan Gali,Baloglu Erkan,Shacham Sharon,Valsasina Barbara,Cucchi Ulisse,Pippione Agnese Chiara,Lolli Marco Lucio,Giabbai Barbara,Storici Paola,Carloni Paolo,Rossetti Giulia,Benvenuti Federica,Bello Ezia,D'Incalci Maurizio,Cappuzzello Elisa,Rosato Antonio,Del Sal Giannino Nature communications The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo. 10.1038/ncomms15772