AI总结:
Scan me!
共20篇 平均IF=4.95 (2.5-33)更多分析
  • 1区Q1影响因子: 33
    1. Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis.
    作者:Borst Katharina , Frenz Theresa , Spanier Julia , Tegtmeyer Pia-Katharina , Chhatbar Chintan , Skerra Jennifer , Ghita Luca , Namineni Sukumar , Lienenklaus Stefan , Köster Mario , Heikenwaelder Mathias , Sutter Gerd , Kalinke Ulrich
    期刊:Journal of hepatology
    日期:2017-12-21
    DOI :10.1016/j.jhep.2017.11.029
    BACKGROUND & AIM:Virus-induced fulminant hepatitis is a major cause of acute liver failure. During acute viral hepatitis the impact of type I interferon (IFN-I) on myeloid cells, including liver-resident Kupffer cells (KC), is only partially understood. Herein, we dissected the impact of locally induced IFN-I responses on myeloid cell function and hepatocytes during acute liver inflammation. METHODS:Two different DNA-encoded viruses, vaccinia virus (VACV) and murine cytomegalovirus (MCMV), were studied. In vivo imaging was applied to visualize local IFN-β induction and IFN-I receptor (IFNAR) triggering in VACV-infected reporter mice. Furthermore, mice with a cell type-selective IFNAR ablation were analyzed to dissect the role of IFNAR signaling in myeloid cells and hepatocytes. Experiments with Cx3cr1 mice revealed the origin of reconstituted KC. Finally, mixed bone marrow chimeric mice were studied to specifically analyze the effect of IFNAR triggering on liver infiltrating monocytes. RESULTS:VACV infection induced local IFN-β responses, which lead to IFNAR signaling primarily within the liver. IFNAR triggering was needed to control the infection and prevent fulminant hepatitis. The severity of liver inflammation was independent of IFNAR triggering of hepatocytes, whereas IFNAR triggering of myeloid cells protected from excessive inflammation. Upon VACV or MCMV infection KC disappeared, whereas infiltrating monocytes differentiated to KC afterwards. During IFNAR triggering such replenished monocyte-derived KC comprised more IFNAR-deficient than -competent cells in mixed bone marrow chimeric mice, whereas after the decline of IFNAR triggering both subsets showed an even distribution. CONCLUSION:Upon VACV infection IFNAR triggering of myeloid cells, but not of hepatocytes, critically modulates acute viral hepatitis. During infection with DNA-encoded viruses IFNAR triggering of liver-infiltrating blood monocytes delays the development of monocyte-derived KC, pointing towards new therapeutic strategies for acute viral hepatitis. LAY SUMMARY:Viral infection can cause fulminant hepatitis, which in turn is a major cause of acute liver failure. Herein, we aimed to study the role of type 1 interferon responses in acute viral hepatitis. We identified that during infection with DNA-encoded viruses, type 1 interferon receptor triggering of blood monocytes delays the development of monocyte-derived Kupffer cells. This points to new therapeutic strategies for acute viral hepatitis.
  • 3区Q1影响因子: 4.9
    跳转PDF
    2. Importance of Kupffer cells in the development of acute liver injuries in mice.
    作者:Tsutsui Hiroko , Nishiguchi Shuhei
    期刊:International journal of molecular sciences
    日期:2014-05-05
    DOI :10.3390/ijms15057711
    Kupffer cells reside within the liver sinusoid and serve as gatekeepers. They produce pro- and anti-inflammatory cytokines and other biologically important molecules upon the engagement of pattern recognition receptors such as Toll-like receptors. Kupffer cell-ablated mice established by in vivo treatment with clodronate liposomes have revealed many important features of Kupffer cells. In this paper, we review the importance of Kupffer cells in murine acute liver injuries and focus on the following two models: lipopolysaccharide (LPS)-induced liver injury, which is induced by priming with Propionibacterium acnes and subsequent challenge with LPS, and hypercoagulability-mediated acute liver failure such as that in concanavalin A (Con A)-induced hepatitis. Kupffer cells are required for LPS sensitization induced by P. acnes and are a major cellular source of interleukin-18, which induces acute liver injury following LPS challenge. Kupffer cells contribute to Con A-induced acute liver failure by initiating pathogenic, intrasinusoidal thrombosis in collaboration with sinusoidal endothelial cells. The mechanisms underlying these models may shed light on human liver injuries induced by various etiologies such as viral infection and/or abnormal metabolism.
  • 3区Q2影响因子: 4.2
    跳转PDF
    3. CXCL6-EGFR-induced Kupffer cells secrete TGF-β1 promoting hepatic stellate cell activation via the SMAD2/BRD4/C-MYC/EZH2 pathway in liver fibrosis.
    作者:Cai Xiaobo , Li Zhenghong , Zhang Qidi , Qu Yin , Xu Mingyi , Wan Xinjian , Lu Lungen
    期刊:Journal of cellular and molecular medicine
    日期:2018-08-14
    DOI :10.1111/jcmm.13787
    Liver fibrosis is the excessive accumulation of extracellular matrix proteins in response to the inflammatory response that accompanies tissue injury, which at an advanced stage can lead to cirrhosis and even liver failure. This study investigated the role of the CXC chemokine CXCL6 (GCP-2) in liver fibrosis. The expression of CXCL6 was found to be elevated in the serum and liver tissue of high stage liver fibrosis patients. Furthermore, treatment with CXCL6 (100 ng/mL) stimulated the phosphorylation of EGFR and the expression of TGF-β in cultured Kupffer cells (KCs). Although treatment with CXCL6 directly did not activate the hepatic stellate cell (HSC) line, HSC-T6, HSCs cultured with media taken from KCs treated with CXCL6 or TGF-β showed increased expression of α-SMA, a marker of HSC activation. CXCL6 was shown to function via the SMAD2/BRD4/C-MYC/EZH2 pathway by enhancing the SMAD3-BRD4 interaction and promoting direct binding of BRD4 to the C-MYC promoter and CMY-C to the EZH2 promoter, thereby inducing profibrogenic gene expression in HSCs, leading to activation and transdifferentiation into fibrogenic myofibroblasts. These findings were confirmed in a mouse model of CCl -induced chronic liver injury and fibrosis in which the levels of CXCL6 and TGF-β in serum and the expression of α-SMA, SMAD3, BRD4, C-MYC, and EZH2 in liver tissue were increased. Taken together, our results reveal that CXCL6 plays an important role in liver fibrosis through stimulating the release of TGF-β by KCs and thereby activating HSCs.
  • 2区Q1影响因子: 3.9
    4. Encapsulated platelets modulate kupffer cell activation and reduce oxidative stress in a model of acute liver failure.
    作者:López Mónica Luján , Uribe-Cruz Carolina , Osvaldt Alessandro , Kieling Carlos Oscar , Simon Laura , Tobar Santiago , Andrades Michael , Matte Ursula
    期刊:Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society
    日期:2016-11-01
    DOI :10.1002/lt.24524
    Acute liver failure (ALF) is characterized by massive hepatocyte cell death. Kupffer cells (KC) are the first cells to be activated after liver injury. They secrete cytokines and produce reactive oxygen species, leading to apoptosis of hepatocytes. In a previous study, we showed that encapsulated platelets (PLTs) increase survival in a model of ALF. Here, we investigate how PLTs exert their beneficial effect. Wistar rats submitted to 90% hepatectomy were treated with PLTs encapsulated in sodium alginate or empty capsules. Animals were euthanized at 6, 12, 24, 48, and 72 hours after hepatectomy, and livers were collected to assess oxidative stress, caspase activity, and gene expression related to oxidative stress or liver function. The number of KCs in the remnant liver was evaluated. Interaction of encapsulated PLTs and KCs was investigated using a coculture system. PLTs increase superoxide dismutase and catalase activity and reduce lipid peroxidation. In addition, caspase 3 activity was reduced in animals receiving encapsulated PLTs at 48 and 72 hours. Gene expression of endothelial nitric oxide synthase and nuclear factor kappa B were elevated in the PLT group at each time point analyzed. Gene expression of albumin and factor V also increased in the PLT group. The number of KCs in the PLT group returned to normal levels at 12 hours but remained elevated in the control group until 72 hours. Finally, PLTs modulate interleukin (IL) 6 and IL10 expression in KCs after 24 hours of coculture. In conclusion, these results indicate that PLTs interact with KCs in this model and exert their beneficial effect through reduction of oxidative stress that results in healthier hepatocytes and decreased apoptosis. Liver Transplantation 22 1562-1572 2016 AASLD.
  • 2区Q1影响因子: 4.9
    打开PDF
    5. Early use of dexamethasone increases Nr4a1 in Kupffer cells ameliorating acute liver failure in mice in a glucocorticoid receptor-dependent manner.
    作者:Deng Jing-Wen , Yang Qin , Cai Xiao-Peng , Zhou Jia-Ming , E Wei-Gao , An Yan-Dong , Zheng Qiu-Xian , Hong Meng , Ren Yan-Li , Guan Jun , Wang Gang , Lai Shu-Jing , Chen Zhi
    期刊:Journal of Zhejiang University. Science. B
    日期:2020 Sept.
    DOI :10.1631/jzus.B2000249
    BACKGROUND AND OBJECTIVE:Acute liver failure (ALF) is a type of disease with high mortality and rapid progression with no specific treatment methods currently available. Glucocorticoids exert beneficial clinical effects on therapy for ALF. However, the mechanism of this effect remains unclear and when to use glucocorticoids in patients with ALF is difficult to determine. The purpose of this study was to investigate the specific immunological mechanism of dexamethasone (Dex) on treatment of ALF induced by lipopolysaccharide (LPS)/D-galactosamine (D-GaIN) in mice. METHODS:Male C57BL/6 mice were given LPS and D-GaIN by intraperitoneal injection to establish an animal model of ALF. Dex was administrated to these mice and its therapeutic effect was observed. Hematoxylin and eosin (H&E) staining was used to determine liver pathology. Multicolor flow cytometry, cytometric bead array (CBA) method, and next-generation sequencing were performed to detect changes of messenger RNA (mRNA) in immune cells, cytokines, and Kupffer cells, respectively. RESULTS:A mouse model of ALF can be constructed successfully using LPS/D-GaIN, which causes a cytokine storm in early disease progression. Innate immune cells change markedly with progression of liver failure. Earlier use of Dex, at 0 h rather than 1 h, could significantly improve the progression of ALF induced by LPS/D-GaIN in mice. Numbers of innate immune cells, especially Kupffer cells and neutrophils, increased significantly in the Dex-treated group. In vivo experiments indicated that the therapeutic effect of Dex is exerted mainly via the glucocorticoid receptor (Gr). Sequencing of Kupffer cells revealed that Dex could increase mRNA transcription level of nuclear receptor subfamily 4 group A member 1 (Nr4a1), and that this effect disappeared after Gr inhibition. CONCLUSIONS:In LPS/D-GaIN-induced ALF mice, early administration of Dex improved ALF by increasing the numbers of innate immune cells, especially Kupffer cells and neutrophils. Gr-dependent Nr4a1 upregulation in Kupffer cells may be an important ALF effect regulated by Dex in this process.
  • 1区Q1影响因子: 10.1
    打开PDF
    6. Elevated circulating TGFβ1 during acute liver failure activates TGFβR2 on cortical neurons and exacerbates neuroinflammation and hepatic encephalopathy in mice.
    作者:McMillin Matthew , Grant Stephanie , Frampton Gabriel , Petrescu Anca D , Williams Elaina , Jefferson Brandi , Thomas Alison , Brahmaroutu Ankita , DeMorrow Sharon
    期刊:Journal of neuroinflammation
    日期:2019-04-02
    DOI :10.1186/s12974-019-1455-y
    BACKGROUND:Acute liver failure resulting from drug-induced liver injury can lead to the development of neurological complications called hepatic encephalopathy (HE). Hepatic transforming growth factor beta 1 (TGFβ1) is upregulated due to liver failure in mice and inhibiting circulating TGFβ reduced HE progression. However, the specific contributions of TGFβ1 on brain cell populations and neuroinflammation during HE are not known. Therefore, the aim of this study was to characterize hepatic and brain TGFβ1 signaling during acute liver failure and its contribution to HE progression using a combination of pharmacological and genetic approaches. METHODS:C57Bl/6 or neuron-specific transforming growth factor beta receptor 2 (TGFβR2) null mice (TGFβR2) were treated with azoxymethane (AOM) to induce acute liver failure and HE. The activity of circulating TGFβ1 was inhibited in C57Bl/6 mice via injection of a neutralizing antibody against TGFβ1 (anti-TGFβ1) prior to AOM injection. In all mouse treatment groups, liver damage, neuroinflammation, and neurological deficits were assessed. Inflammatory signaling between neurons and microglia were investigated in in vitro studies through the use of pharmacological inhibitors of TGFβ1 signaling in HT-22 and EOC-20 cells. RESULTS:TGFβ1 was expressed and upregulated in the liver following AOM injection. Pharmacological inhibition of TGFβ1 after AOM injection attenuated neurological decline, microglia activation, and neuroinflammation with no significant changes in liver damage. TGFβR2 mice administered AOM showed no effect on liver pathology but significantly reduced neurological decline compared to control mice. Microglia activation and neuroinflammation were attenuated in mice with pharmacological inhibition of TGFβ1 or in TGFβR2 mice. TGFβ1 increased chemokine ligand 2 (CCL2) and decreased C-X3-C motif ligand 1 (CX3CL1) expression in HT-22 cells and reduced interleukin-1 beta (IL-1ß) expression, tumor necrosis factor alpha (TNFα) expression, and phagocytosis activity in EOC-20 cells. CONCLUSION:Increased circulating TGFβ1 following acute liver failure results in activation of neuronal TGFβR2 signaling, driving neuroinflammation and neurological decline during AOM-induced HE.
  • 1区Q1影响因子: 33
    跳转PDF
    7. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure.
    作者:Ferriero Rosa , Nusco Edoardo , De Cegli Rossella , Carissimo Annamaria , Manco Giuseppe , Brunetti-Pierri Nicola
    期刊:Journal of hepatology
    日期:2018-03-24
    DOI :10.1016/j.jhep.2018.03.016
    BACKGROUND & AIMS:Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. METHODS:Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. RESULTS:Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. CONCLUSION:PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. LAY SUMMARY:Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival.
  • 2区Q1影响因子: 4.7
    8. Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress.
    作者:Lyu Zheng , Ji Xufeng , Chen Geng , An Beiying
    期刊:International immunopharmacology
    日期:2019-04-24
    DOI :10.1016/j.intimp.2019.04.005
    Atractylodin (ACD) possesses versatile biological and pharmacological activities, including antibacterial, anti-inflammatory and hepatoprotective properties. However, the protective effects of ACD on lipopolysaccharide (LPS) and d-galactosamine (GalN)-induced acute liver failure (ALF) as well as the underlying molecular mechanisms remain unclear. In this study, our findings showed that ACD treatment could reduce the high lethality rate; decrease the serum levels of alanine transaminase (ALT), aspartate aminotransferase (AST), monocyte chemoattractant protein (MCP)-1, interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α), and ameliorate the pathological hepatic damage of ALF. Furthermore, ACD pretreatment inhibited toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), the mitogen-activated protein kinase (MAPK) and NOD-like receptor protein-3 (NLRP3) activation pathway. Moreover, our research showed that ACD could dramatically increase superoxide dismutase (SOD) and glutathione (GSH) production, and reduce COX-2, inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS) and malondialdehyde (MDA) production through upregulating the expression of the anti-oxidative enzymes heme oxygenase-1 (HO-1) and quinone (NQO1), which were related to the induction of nuclear transcription factor 2 (Nrf2) nuclear translocation. These results indicated that ACD exhibited anti-inflammatory activity, which was associated with the inhibition of inflammatory mediator production via the downregulation of the NLRP3 inflammasome and TLR4-NF-κB/-MAPK signaling pathways, and the antioxidative effects of ACD were connected with GSH and SOD activation through upregulation of the Nrf2-mediated signaling pathways.
  • 4区Q2影响因子: 2.5
    9. Acute Liver Failure from Tumor Necrosis Factor-α Antagonists: Report of Four Cases and Literature Review.
    作者:Kok Beverley , Lester Erica L W , Lee William M , Hanje A James , Stravitz R Todd , Girgis Safwat , Patel Vaishali , Peck Joshua R , Esber Christopher , Karvellas Constantine J ,
    期刊:Digestive diseases and sciences
    日期:2018-03-21
    DOI :10.1007/s10620-018-5023-6
    BACKGROUND:Tumor necrosis factor-α antagonists (anti-TNF-α) have been associated with drug-induced liver injury. However, cases of anti-TNF-α-associated acute liver failure have only been rarely reported. AIMS:To identify cases of anti-TNF-α-associated acute liver failure and evaluate patterns of liver injury and common characteristics to the cases. METHODS:The United States Acute Liver Failure Study Group database was searched from 1998 to 2014. Four subjects were identified. A PubMed search for articles that reported anti-TNF-α-associated acute liver failure identified five additional cases. RESULTS:The majority of individuals affected were female (eight of nine cases). Age of individual ranged from 20 to 53 years. The most common anti-TNF-α agent associated with acute liver failure was infliximab (n = 8). The latency between initial drug exposure and acute liver failure ranged from 3 days to over a year. Of the nine cases, six required emergency LT. Liver biopsy was obtained in seven cases with a preponderance toward cholestatic-hepatitic features; none showed clear autoimmune features. CONCLUSIONS:Anti-TNF-α-associated acute liver failure displays somewhat different characteristics compared with anti-TNF-α-induced drug-induced liver injury. Infliximab was implicated in the majority of cases. Cholestatic-hepatitic features were frequently found on pre-transplant and explant histology.
  • 4区Q2影响因子: 3
    10. Gensenoside Rg1 protects against lipopolysaccharide- and d-galactose-induced acute liver failure via suppressing HMGB1-mediated TLR4-NF-κB pathway.
    作者:Jin Huanzhi , Jiang Yingying , Lv Wang , Chen Linglong , Zheng Yanyan , Lin Yue
    期刊:Molecular and cellular probes
    日期:2021-02-20
    DOI :10.1016/j.mcp.2021.101706
    AIM:Acute liver failure (ALF) is a life-threatening acute liver injury (ALI) with high mortality. Gensenoside Rg1 (G-Rg1) effects on Lipopolysaccharide- (LPS-) and d-galactose-(D-gal-) induced ALI, but its effects on ALF remained unclear. This paper aimed to validate its possible efficacy on ALF prevention. METHODS:For in vivo studies, histological examination was performed using hematoxylin-eosin (H&E) staining, and alanine aminotransferase (ALT), aspartate aminotransminase (AST), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) contents were measured. Levels of inflammatory cytokines tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) were quantified via enzyme-linked immunosorbent assay (ELISA). Human bronchial epithelial cell line BEAS-2B was used for ALF model in vitro and its viability was measured by MTT assay. Expressions of high mobility group box 1 (HMGB1) and toll-like receptor 4-Nuclear Factor-κB (TLR4-NF-κB) pathway-related proteins were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. RESULTS:G-Rg1 relieved LPS- and D-gal-induced hepatic injury, and reduced ALT, AST and MDA levels but upregulated SOD and GSH levels, with downregulation on TNF-α and IL-6 levels. Expressions of HMGB1, TLR4 and NF-κB pathway-related proteins were also down-regulated after G-Rg1 treatment both in vivo and in vitro, while BEAS-2B cell viability was increased. However, overexpressed HMGB1 reversed the effects of G-Rg1 treatment in vitro. CONCLUSION:G-Rg1 had a protective effect against LPS- and D-gal-induced ALF both in vitro and in vivo, which might be related to inhibited HMGB1-mediated TLR4-NF-κB Pathway. These discoveries suggested that G-Rg1 could be a potential agent for prevention against ALF.
  • 1区Q1影响因子: 7.4
    打开PDF
    11. Circulating Bile Acids in Liver Failure Activate TGR5 and Induce Monocyte Dysfunction.
    作者:Leonhardt Julia , Haider Raphael S , Sponholz Christoph , Leonhardt Silke , Drube Julia , Spengler Katrin , Mihaylov Diana , Neugebauer Sophie , Kiehntopf Michael , Lambert Nevin A , Kortgen Andreas , Bruns Tony , Tacke Frank , Hoffmann Carsten , Bauer Michael , Heller Regine
    期刊:Cellular and molecular gastroenterology and hepatology
    日期:2021-02-02
    DOI :10.1016/j.jcmgh.2021.01.011
    BACKGROUND & AIMS:Retention of bile acids in the blood is a hallmark of liver failure. Recent studies have shown that increased serum bile acid levels correlate with bacterial infection and increased mortality. However, the mechanisms by which circulating bile acids influence patient outcomes still are elusive. METHODS:Serum bile acid profiles in 33 critically ill patients with liver failure and their effects on Takeda G-protein-coupled receptor 5 (TGR5), an immunomodulatory receptor that is highly expressed in monocytes, were analyzed using tandem mass spectrometry, novel highly sensitive TGR5 bioluminescence resonance energy transfer using nanoluciferase (NanoBRET, Promega Corp, Madison, WI) technology, and in vitro assays with human monocytes. RESULTS:Twenty-two patients (67%) had serum bile acids that led to distinct TGR5 activation. These TGR5-activating serum bile acids severely compromised monocyte function. The release of proinflammatory cytokines (eg, tumor necrosis factor α or interleukin 6) in response to bacterial challenge was reduced significantly if monocytes were incubated with TGR5-activating serum bile acids from patients with liver failure. By contrast, serum bile acids from healthy volunteers did not influence cytokine release. Monocytes that did not express TGR5 were protected from the bile acid effects. TGR5-activating serum bile acids were a risk factor for a fatal outcome in patients with liver failure, independent of disease severity. CONCLUSIONS:Depending on their composition and quantity, serum bile acids in liver failure activate TGR5. TGR5 activation leads to monocyte dysfunction and correlates with mortality, independent of disease activity. This indicates an active role of TGR5 in liver failure. Therefore, TGR5 and bile acid metabolism might be promising targets for the treatment of immune dysfunction in liver failure.
  • 3区Q1影响因子: 4.7
    12. Obeticholic acid differentially regulates hepatic injury and inflammation at different stages of D-galactosamine/lipopolysaccharide-evoked acute liver failure.
    作者:Ding Wen , Fan Yuan-Yuan , Zhang Cheng , Fu Lin , Chen Xi , Xu De-Xiang
    期刊:European journal of pharmacology
    日期:2019-02-15
    DOI :10.1016/j.ejphar.2019.02.011
    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that regulates genes involved in bile acid metabolism. Accumulating data demonstrate that FXR has an anti-inflammatory activity. The present study aimed to investigate the effect of obeticholic acid (OCA), a novel synthetic FXR agonist, on D-galactosamine (GalN)/lipopolysaccharide (LPS)-evoked acute liver injury. All mice except controls were intraperitoneally injected with GalN (300 mg/kg) plus LPS (2.5 μg/kg). Some mice were pretreated with OCA (10 mg/kg) 48, 24 and 1 h before GalN/LPS. As expected, pretreatment with OCA alleviated hepatocyte apoptosis at early and middle stages of GalN/LPS-induced acute liver failure. By contrast, pretreatment with OCA augmented hepatic injury and inflammatory cell infiltration at middle stage of GalN/LPS-induced acute liver failure. Additional experiment found that OCA inhibited hepatic NF-κB activation at early and middle stages of GalN/LPS-induced acute liver failure. Interestingly, OCA inhibited hepatic proinflammatory cytokine tnf-α and il-6 but upregulated hepatic anti-inflammatory cytokine il-10 at early stage of GalN/LPS-induced acute liver failure. By contrast, OCA suppressed hepatic anti-inflammatory cytokine tgf-β and il-10 at middle stage of GalN/LPS-induced acute liver injury. These results suggest that FXR agonist OCA differentially regulates hepatic injury and inflammation at different stages of GalN/LPS-evoked acute liver failure.
  • 2区Q2影响因子: 7.31
    打开PDF
    13. Protective Role of 4-Octyl Itaconate in Murine LPS/D-GalN-Induced Acute Liver Failure via Inhibiting Inflammation, Oxidative Stress, and Apoptosis.
    作者:Li Ruidong , Yang Wenchang , Yin Yuping , Zhang Peng , Wang Yaxin , Tao Kaixiong
    期刊:Oxidative medicine and cellular longevity
    日期:2021-08-17
    DOI :10.1155/2021/9932099
    Oxidative stress, inflammation, and apoptosis are crucial in the pathogenesis of acute liver failure (ALF). 4-Octyl itaconate (OI) showed antioxidative and anti-inflammatory properties in many disease models. However, its role in lipopolysaccharide- (LPS-)/D-galactosamine- (D-GalN-) induced ALF is still not investigated. Here, we established an ALF murine model induced by LPS/D-GalN administration. And we found that OI improved survival rate in the murine ALF model. Our results also showed that OI alleviated LPS/D-GalN-induced hepatic histopathological injury and reduced the serum activities of alanine transaminase and aspartate transaminase. Moreover, OI reduced serum levels of proinflammatory cytokines such as monocyte chemotactic protein-1, tumor necrosis factors-, and interlukin-6. Additionally, OI mitigated oxidative stress and alleviated lipid peroxidation in a murine model of ALF. This was evaluated by a reduction of thiobarbituric acid reactive substances (TBARS) in liver tissues. In addition, OI increased the ratio of reduced glutathione/oxidized glutathione and the activities of antioxidant enzymes including catalase and superoxide dismutase. Moreover, the apoptosis of hepatocytes in the liver was inhibited by OI. Furthermore, we found that OI inhibited LPS-induced nuclear translocation and activation of factor-kappa B (NF-B) p65 in macrophages which could be inhibited by OI-induced activation of nuclear factor erythroid-2-related factor (Nrf2) signaling. Additionally, D-GalN-induced reactive oxygen species (ROS) generation and apoptosis in hepatocytes were inhibited by OI-induced activation of Nrf2 signaling. Therefore, the underlying mechanism for OI's protective effect in LPS/D-GalN-induced ALF may be associated with deactivation of NF-B signaling in macrophages to reduce inflammation and inhibition of ROS-related hepatocyte apoptosis by activating Nrf2. In conclusion, OI showed a protective role in LPS/D-GalN-induced ALF by reducing inflammation, enhancing antioxidant capacity, and inhibiting cell apoptosis.
  • 3区Q2影响因子: 4.1
    打开PDF
    14. Histone Deacetylase 6 Regulates the Activation of M1 Macrophages by the Glycolytic Pathway During Acute Liver Failure.
    作者:Wang Yao , Li Xun , Chen Qian , Jiao Fangzhou , Shi Chunxia , Pei Maohua , Wang Luwen , Gong Zuojiong
    期刊:Journal of inflammation research
    日期:2021-04-15
    DOI :10.2147/JIR.S302391
    Background:The glycolysis pathway of M1 macrophages is a key factor affecting the inflammatory response. The aim of this article is to investigate the role of histone deacetylase 6 (HDAC6) in the M1 macrophage glycolysis pathway during acute liver failure (ALF). Methodology:Targeted metabolomics for quantitative analysis of energy metabolites technology was used to detect the characteristics of energy metabolism for 8 ALF patients and 8 normal volunteers. The ALF mice model was intervened with HDAC6 inhibitor ACY-1215. iTRAQ/TMT quantitative proteomics was used to detect protein expression in livers in different mice groups. The liver function, energy metabolites, M1 macrophages, cytokines, and pathological structure, DDX3X, NLRP3 and DNMT1 in liver tissue were detected. The changes of the above molecules were verified in cell groups. Results:ALF patients and mice have significant energy metabolism disorders, accompanied by activation of M1 macrophages. After the intervention of ACY-1215, the activated M1 macrophages and cytokines levels in the mouse liver were reduced. The levels of IDH1, MDH1, and ATP were significantly increased. The expression of DDX3X increased, while the expression of NLRP3 and DNMT1 decreased. ACY-1215 could reduce the model cell apoptosis level and inflammatory response, and improve energy metabolism. It could also promote the expression of DDX3X, and inhibit the expression of NLRP3 and DNMT1. Conclusion:ACY-1215 could inhibit the activation of M1 macrophages by improving the glycolytic pathway through regulating DNMT1 and DDX3X/NLRP3 signals to alleviate ALF.
  • 3区Q2影响因子: 3.6
    打开PDF
    15. Inhibition of 5-lipoxygenase pathway attenuates acute liver failure by inhibiting macrophage activation.
    作者:Li Lu , Liu Yi-Rong , Gao Shan , Li Jun-Feng , Li Shan-Shan , Zhang Dan-Dan , Liu Shuang , Bai Li , Zheng Su-Jun , Duan Zhong-Ping , Qi Min , Chen Yu
    期刊:Journal of immunology research
    日期:2014-06-01
    DOI :10.1155/2014/697560
    This study aimed to investigate the role of 5-lipoxygenase (5-LO) in acute liver failure (ALF) and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN)/lipopolysaccharide (LPS). Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor), 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (Tbil), and tumor necrosis factor- (TNF-) α . Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF- α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.
  • 1区Q1影响因子: 13.3
    打开PDF
    16. Soyasaponin II protects against acute liver failure through diminishing YB-1 phosphorylation and Nlrp3-inflammasome priming in mice.
    期刊:Theranostics
    日期:2020-02-03
    DOI :10.7150/thno.40128
    Acute liver failure is characterized by the rapid development of liver dysfunction and remarkably high mortality. Accumulating evidence suggests that soyasaponin possesses potential anti-inflammatory activities. Here, we aimed to investigate the potential role of soyasaponin II in acute liver failure and establish the underlying mechanism. : Lipopolysaccharide/D-galactosamine (LPS/GalN) was employed to induce acute liver failure. We applied liquid chromatography and mass spectrometry (LC/MS) to characterize the changes of soyasaponin II levels in the cecal content and liver. Transcriptomics and proteomics analysis were used to evaluate the functional molecule mediated by soyasaponin II in macrophages. : LPS/GalN administration markedly decreased fecal and hepatic soyasaponin II levels. Soyasaponin II treatment protected mice against LPS/GalN induced acute liver injury. Additionally, soyasaponin II markedly diminished Y-Box Binding Protein 1 (YB-1) phosphorylation and nuclear translocation, Nlrp3 inflammasome priming, and interleukin 1β (Il-1β) production in macrophages. Phosphorylated YB-1 could activate Nlrp3 mRNA transcription by binding the promoter region. Finally, immunofluorescence analysis showed elevated p-YB-1 nuclear translocation in macrophages of acute liver failure patients compared to controls. : Our data shows that soyasaponin II which serves as a novel inhibitor for YB-1 phosphorylation and Nlrp3 inflammasome priming could protect mice against LPS/GalN induced acute liver failure.
  • 1区Q2影响因子: 5.6
    打开PDF
    17. TNF-α/HMGB1 inflammation signalling pathway regulates pyroptosis during liver failure and acute kidney injury.
    作者:Wang Yao , Zhang Haiyue , Chen Qian , Jiao Fangzhou , Shi Chunxia , Pei Maohua , Lv Jian , Zhang Hong , Wang Luwen , Gong Zuojiong
    期刊:Cell proliferation
    日期:2020-05-17
    DOI :10.1111/cpr.12829
    OBJECTIVE:Acute kidney injury (AKI) is a common complication of acute liver failure (ALF). Pyroptosis is a necrosis type related to inflammation. This study aimed to investigate the role of TNF-α/HMGB1 pathway in pyroptosis during ALF and AKI. METHODS:An ALF and AKI mouse model was generated using LPS/D-Gal, and a TNF-α inhibitor, CC-5013, was used to treat the mice. THP-1 cells were induced to differentiate into M1 macrophages, then challenged with either CC-5013 or an HMGB1 inhibitor, glycyrrhizin. pLVX-mCMVZsGreen-PGK-Puros plasmids containing TNF-α wild-type (WT), mutation A94T of TNF-α and mutation P84L of TNF-α were transfected into M1 macrophages. RESULTS:Treatment with CC-5013 decreased the activation of TNF-α/HMGB1 pathway and pyroptosis in the treated mice and cells compared with the control mice and cells. CC-5013 also ameliorated liver and kidney pathological changes and improved liver and renal functions in treated mice, and the number of M1 macrophages in the liver and kidney tissues also decreased. The activation of TNF-α/HMGB1 pathway and pyroptosis increased in the M1 macrophage group compared with the normal group. Similarly, the activation of TNF-α/HMGB1 pathway and pyroptosis in the LPS + WT group also increased. By contrast, the activation of the TNF-α/HMGB1 pathway and pyroptosis decreased in the LPS + A94T and LPS + P84L groups. Moreover, glycyrrhizin inhibited pyroptosis. CONCLUSION:The TNF-α/HMGB1 inflammation signalling pathway plays an important role in pyroptosis during ALF and AKI.
  • 3区Q1影响因子: 5.4
    打开PDF
    18. Gasdermin D-mediated hepatocyte pyroptosis expands inflammatory responses that aggravate acute liver failure by upregulating monocyte chemotactic protein 1/CC chemokine receptor-2 to recruit macrophages.
    作者:Li Hong , Zhao Xue-Ke , Cheng Yi-Ju , Zhang Quan , Wu Jun , Lu Shuang , Zhang Wei , Liu Yang , Zhou Ming-Yu , Wang Ya , Yang Jing , Cheng Ming-Liang
    期刊:World journal of gastroenterology
    日期:2019-11-28
    DOI :10.3748/wjg.v25.i44.6527
    BACKGROUND:Massive hepatocyte death is the core event in acute liver failure (ALF). Gasdermin D (GSDMD)-mediated pyroptosis is a type of highly inflammatory cell death. However, the role of hepatocyte pyroptosis and its mechanisms of expanding inflammatory responses in ALF are unclear. AIM:To investigate the role and mechanisms of GSDMD-mediated hepatocyte pyroptosis through and experiments. METHODS:The expression of pyroptosis pathway-associated proteins in liver tissues from ALF patients and a hepatocyte injury model was examined by Western blot. GSDMD short hairpin RNA (shRNA) was used to investigate the effects of downregulation of GSDMD on monocyte chemotactic protein 1 (MCP1) and its receptor CC chemokine receptor-2 (CCR2) . For experiments, we used GSDMD knockout mice to investigate the role and mechanism of GSDMD in a D-galactose/lipopolysaccharide (D-Galn/LPS)-induced ALF mouse model. RESULTS:The levels of pyroptosis pathway-associated proteins in liver tissue from ALF patients and a hepatocyte injury model increased significantly. The level of GSDMD-N protein increased most obviously ( < 0.001). , downregulation of GSDMD by shRNA decreased the cell inhibition rate and the levels of MCP1/CCR2 proteins ( < 0.01). , GSDMD knockout dramatically eliminated inflammatory damage in the liver and improved the survival of D-Galn/LPS-induced ALF mice ( < 0.001). Unlike the mechanism of immune cell pyroptosis that involves releasing interleukin (IL)-1β and IL-18, GSDMD-mediated hepatocyte pyroptosis recruited macrophages MCP1/CCR2 to aggravate hepatocyte death. However, this pathological process was inhibited after knocking down GSDMD. CONCLUSION:GSDMD-mediated hepatocyte pyroptosis plays an important role in the pathogenesis of ALF, recruiting macrophages to release inflammatory mediators by upregulating MCP1/CCR2 and leading to expansion of the inflammatory responses. GSDMD knockout can reduce hepatocyte death and inflammatory responses, thus alleviating ALF.
  • 2区Q1影响因子: 5
    19. Noncanonical Wnt5a/JNK Signaling Contributes to the Development of D-Gal/LPS-Induced Acute Liver Failure.
    期刊:Inflammation
    日期:2022-01-31
    DOI :10.1007/s10753-022-01627-y
    Acute liver failure (ALF) is a deadly clinical disorder with few effective treatments and unclear pathogenesis. In our previous study, we demonstrated that aberrant Wnt5a expression was involved in acute-on-chronic liver failure. However, the role of Wnt5a in ALF is unknown. We investigated the expression of Wnt5a and its downstream c-Jun N-terminal kinase (JNK) signaling in a mouse model of ALF established by coinjection of D-galactosamine (D-Gal) and lipopolysaccharide (LPS) in C57BL/6 mice. We also investigated the role of Box5, a Wnt5a antagonist, in vivo. Moreover, the effect of Wnt5a/JNK signaling on downstream inflammatory cytokine expression, phagocytosis, and migration in THP-1 macrophages was studied in vitro. Aberrant Wnt5a expression and JNK activation were detected in D-Gal/LPS-induced ALF mice. Box5 pretreatment reversed JNK activation and eventually decreased the mortality rate of D-Gal/LPS-treated mice, with reduced hepatic necrosis and apoptosis, serum ALT and AST levels, and liver inflammatory cytokine expression, although the latter was not significant. We further demonstrated that recombinant Wnt5a (rWnt5a)-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA expression and increased THP-1 macrophage phagocytosis in a JNK-dependent manner, which could be restored by Box5. In addition, rWnt5a-induced migration of THP-1 macrophages was also reversed by Box5. Our findings suggested that Wnt5a/JNK signaling plays an important role in the development of ALF and that Box5 could have particular hepatoprotective effects in ALF.
  • 3区Q1影响因子: 5.1
    20. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage.
    作者:Zhang Shuqin , Jiang Linrui , Hu Huazhong , Wang Hong , Wang Xiaoyan , Jiang Jiaohua , Ma Yanyan , Yang Jing , Hou Yu , Xie Denghui , Zhang Qun
    期刊:Life sciences
    日期:2020-02-06
    DOI :10.1016/j.lfs.2020.117401
    AIMS:The management of acute liver failure (ALF) is a major challenge worldwide. The current study aimed to determine the therapeutic potential of TNF-α pretreatment of umbilical cord mesenchymal stem cell-derived exosomes (T-Exo) in ALF. MAIN METHODS:Here, we enriched T-Exo and untreated exosomes (Exo), them were measured by nanoparticle tracking analysis (NTA) for particle size detection and identified surface marker by Western blot and flow cytometry. Then the cell proliferation was detected by CCK-8 and the effect of T-Exo on the expression levels of pro-inflammatory cytokines was tested by ELISA. ALF mouse models were induced by LPS and D-GalN. H&E staining, immunohistochemistry, and Western blot were used to detect the effect of T-Exo on the levels of NLRP3 and other inflammation-related pathway proteins. qPCR was used to detect the expression level of microRNA-299-3p in T-Exo and its transfer to macrophages. Laser confocal microscopy was used to detect colocalization of exosomes,Golgi and NLRP3 in macrophages. KEY FINDINGS:Our study shows that T-Exo can reduce serum ALT, AST and proinflammatory cytokines level and inhibit activation of NLRP3 inflammation-associated pathway proteins. T-Exo treatment reduces pathological liver damage caused by ALF. Anti-inflammatory-related miRNA-299-3p is up-regulated in TNF-α-stimulated MSCs and selectively packaged into exosomes for role in exosomal treatment. And conducted preliminary exploration and hypothesis on the specific mechanism of this effect. SIGNIFICANCE:These in vitro and in vivo studies indicate that T-Exo attenuates inflammatory damage caused by ALF and promotes liver tissue repair by inhibiting the activation of the NLRP3 pathway.
logo logo
$!{favoriteKeywords}