加载中

    Regulation of NLRP3 inflammasome by CD38 through cADPR-mediated Ca release in vascular smooth muscle cells in diabetic mice. Li Jia-Peng,Wei Wei,Li Xiao-Xue,Xu Ming Life sciences AIMS:NLR family pyrin domain containing 3 (NLRP3) inflammasome activation contributes to the development of diabetic cardiovascular complications. CD38 regulates vascular inflammation through cyclic ADP-ribose (cADPR)-mediated Ca signaling in vascular smooth muscle cells (VSMCs). Ca mobilization may modulate inflammasome activation by impacting mitochondrial function. However, it remains unclear whether CD38 regulates NLRP3 inflammasome activation in VSMCs through cADPR-dependent Ca release under diabetic condition. Main methods and key findings: In VSMCs, we observed that high glucose (HG, 30 mM) enhanced CD38 protein expression and ADP ribosyl cyclase activity. Moreover, along with less abundance of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC) and their colocalization, the expression of active caspase-1(p20) and IL-1β were significantly inhibited by CD38 gene deficiency with siRNA transfection in VSMCs. Further, CD38 regulated the release of intracellular cADPR-mediated Ca and mitochondrial DNA (mtDNA) to the cytosol, which was associated with NLRP3 inflammasome activation and VSMCs proliferation and collagen I synthesis. Finally, we found that CD38 inhibitors, nicotinamide and telmisartan significantly improved the endothelium-independent contraction and vascular remodeling, which was also associated with the inhibition of NLRP3 inflammasome in the aorta media in the diabetic mice. SIGNIFICANCE:Our data suggested that CD38/cADPR-mediated Ca signaling contributed to the mitochondrial damage, consequently released mtDNA to the cytosol, which was related with NLRP3 inflammasome activation and VSMCs remodeling in diabetic mice. 10.1016/j.lfs.2020.117758
    Neutrophils process interleukin-1beta and interleukin-18 precursors in a caspase-1-like fashion--processing is inhibited by human vascular smooth muscle cells. Westphal Elena,Herzberg Mona,Neumann Ingo,Beibei Li,Pilowski Claudia,Li Chen,Werdan Karl,Loppnow Harald European cytokine network Inflammation contributes to the pathogenesis of atherosclerosis. Proinflammatory cytokines, including interleukin-1 (IL-1), may be involved in the local inflammation occurring in the vessel wall. Vascular smooth muscle cells express the unprocessed IL-1beta precursor molecule. Invading leukocytes, such as monocytes or polymorphonuclear granulocytes (PMN) may activate the IL-1beta precursor during atherogenesis. Thus, we investigated the capacity of PMN to process IL-1beta and IL-18 precursors. Processing was analyzed using Western blot and bioassay for IL-1-activity was performed. As few as 80 to 400 PMN/mL detectably processed preIL-1beta. PMN also cleaved the caspase-1 substrate preIL-18. The preIL-1beta and preIL-18 cleavage products were located at the same apparent molecular weight as those resulting from cleavage by monocyte-derived caspase-1. PMN expressed caspase-1 mRNA and immunoreactive protein. The N-terminus of the preIL-1beta cleavage product expressed the sequence expected for caspase-1 cleavage. The cleavage product was active in the bioassay for IL-1 activity, and the caspase-1 inhibitor YVAD blocked processing. We have shown previously that SMC can block processing of preIL-1 by caspase-1. In contrast, SMC do not block processing of PARP by caspase-3. Here, we show that SMC also inhibited the PMN-mediated processing of recombinant and native preIL-1beta or preIL-18 depending on the cell number, whereas EC or fibroblasts did not block processing. Our results indicate that PMN can activate preIL-1beta in a caspase-1-like fashion. During inflammatory processes, PMN may activate preIL-1beta released from SMC, thereby altering IL-1-mediated cardiovascular functions, including contractility, apoptosis, and cytokine production.