加载中

    Plasmacytoid dendritic cell-derived IFN-α promotes murine liver ischemia/reperfusion injury by induction of hepatocyte IRF-1. Castellaneta Antonino,Yoshida Osamu,Kimura Shoko,Yokota Shinichiro,Geller David A,Murase Noriko,Thomson Angus W Hepatology (Baltimore, Md.) UNLABELLED:Plasmacytoid dendritic cells (pDC) constitute the body's principal source of type I interferon (IFN) and are comparatively abundant in the liver. Among various cytokines implicated in liver ischemia and reperfusion (I/R) injury, type I IFNs have been described recently as playing an essential role in its pathogenesis. Moreover, type I IFNs have been shown to up-regulate hepatocyte expression of IFN regulatory factor 1 (IRF-1), a key transcription factor that regulates apoptosis and induces liver damage after I/R. Our aim was to ascertain the capacity of IFN-α released by liver pDC to induce liver damage through hepatic IRF-1 up-regulation after I/R injury. Our findings show that liver pDC mature and produce IFN-α in response to liver I/R. Liver pDC isolated after I/R induced elevated levels of IRF-1 production by hepatocytes compared with liver pDC isolated from sham-operated mice. Notably, hepatic IRF-1 expression was reduced significantly by neutralizing IFN-α. In vivo, IFN-α neutralization protected the liver from I/R injury by reducing hepatocyte apoptosis. This was associated with impaired expression of IRF-1 and proapoptotic molecules such as Fas ligand, its receptor (Fas) and death receptor 5, which are regulated by IRF-1. Furthermore, pDC-depleted mice failed to up-regulate hepatic IFN-α and displayed less liver injury associated with reduced levels of hepatic interleukin (IL)-6, tumor necrosis factor-α, and hepatocyte apoptosis after I/R compared with controls. CONCLUSION:these data support the hypothesis that IFN-α derived from liver pDC plays a key role in the pathogenesis of liver I/R injury by enhancing apoptosis as a consequence of induction of hepatocyte IRF-1 expression. 10.1002/hep.27037
    Six-Transmembrane Epithelial Antigen of the Prostate 3 Deficiency in Hepatocytes Protects the Liver Against Ischemia-Reperfusion Injury by Suppressing Transforming Growth Factor-β-Activated Kinase 1. Guo Wen-Zhi,Fang Hong-Bo,Cao Sheng-Li,Chen San-Yang,Li Jie,Shi Ji-Hua,Tang Hong-Wei,Zhang Yi,Wen Pei-Hao,Zhang Jia-Kai,Wang Zhi-Hui,Shi Xiao-Yi,Pang Chun,Yang Han,Hu Bo-Wen,Zhang Shui-Jun Hepatology (Baltimore, Md.) BACKGROUND AND AIMS:Hepatic ischemia-reperfusion (I/R) injury remains a major challenge affecting the morbidity and mortality of liver transplantation. Effective strategies to improve liver function after hepatic I/R injury are limited. Six-transmembrane epithelial antigen of the prostate 3 (Steap3), a key regulator of iron uptake, was reported to be involved in immunity and apoptotic processes in various cell types. However, the role of Steap3 in hepatic I/R-induced liver damage remains largely unclear. APPROACH AND RESULTS:In the present study, we found that Steap3 expression was significantly up-regulated in liver tissue from mice subjected to hepatic I/R surgery and primary hepatocytes challenged with hypoxia/reoxygenation insult. Subsequently, global Steap3 knockout (Steap3-KO) mice, hepatocyte-specific Steap3 transgenic (Steap3-HTG) mice, and their corresponding controls were subjected to partial hepatic warm I/R injury. Hepatic histology, the inflammatory response, and apoptosis were monitored to assess liver damage. The molecular mechanisms of Steap3 function were explored in vivo and in vitro. The results demonstrated that, compared with control mice, Steap3-KO mice exhibited alleviated liver damage after hepatic I/R injury, as shown by smaller necrotic areas, lower serum transaminase levels, decreased apoptosis rates, and reduced inflammatory cell infiltration, whereas Steap3-HTG mice had the opposite phenotype. Further molecular experiments showed that Steap3 deficiency could inhibit transforming growth factor-β-activated kinase 1 (TAK1) activation and downstream c-Jun N-terminal kinase (JNK) and p38 signaling during hepatic I/R injury. CONCLUSIONS:Steap3 is a mediator of hepatic I/R injury that functions by regulating inflammatory responses as well as apoptosis through TAK1-dependent activation of the JNK/p38 pathways. Targeting hepatocytes, Steap3 may be a promising approach to protect the liver against I/R injury. 10.1002/hep.30882