logo logo
SIRT1 is a key regulatory target for the treatment of the endoplasmic reticulum stress-related organ damage. Wang Fuquan,Yao Shanglong,Xia Haifa Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie Endoplasmic reticulum (ER) stress is an evolutionarily conserved adaptive response that contributes to deal with the misfolded or unfolded protein in the lumen of the ER and restore the ER homeostasis. However, excessive and prolonged ER stress can trigger the cell-death signaling pathway which causes cell death, usually in the form of apoptosis. It is generally accepted that inappropriate cellular apoptosis and a series of the subsequent inflammatory response and oxidative stress can cause disturbance of normal physiological functions and organ damage. A lot of evidence shows that the excessive activation of the ER stress contributes to the pathogenesis of many kinds of diseases and inhibiting the inappropriate stress is of great significance for maintaining the normal physiological function. In recent years, Sirtuin1 (SIRT1) has become a research hotspot on ER stress. As a master regulator of ER stress, increasing evidence suggests that SIRT1 plays a positive role in a variety of ER stress-induced organ damage via multiple mechanisms, including inhibiting cellular apoptosis and promoting autophagy. Furthermore, a lot of factors have shown effective regulation of SIRT1, which indicates the feasibility of treating SIRT1 as a target for the treatment of ER stress-related diseases. We summarize and reveal the molecular mechanisms underlying the protective effect of SIRT1 in multiple ER stress-mediated organ damage in this review. We also summed up the possible adjustment mechanism of SIRT1, which provides a theoretical basis for the treatment of ER stress-related diseases. 10.1016/j.biopha.2020.110601
Chaperone-mediated reflux of secretory proteins to the cytosol during endoplasmic reticulum stress. Igbaria Aeid,Merksamer Philip I,Trusina Ala,Tilahun Firehiwot,Johnson Jeffrey R,Brandman Onn,Krogan Nevan J,Weissman Jonathan S,Papa Feroz R Proceedings of the National Academy of Sciences of the United States of America Diverse perturbations to endoplasmic reticulum (ER) functions compromise the proper folding and structural maturation of secretory proteins. To study secretory pathway physiology during such "ER stress," we employed an ER-targeted, redox-responsive, green fluorescent protein-eroGFP-that reports on ambient changes in oxidizing potential. Here we find that diverse ER stress regimes cause properly folded, ER-resident eroGFP (and other ER luminal proteins) to "reflux" back to the reducing environment of the cytosol as intact, folded proteins. By utilizing eroGFP in a comprehensive genetic screen in , we show that ER protein reflux during ER stress requires specific chaperones and cochaperones residing in both the ER and the cytosol. Chaperone-mediated ER protein reflux does not require E3 ligase activity, and proceeds even more vigorously when these ER-associated degradation (ERAD) factors are crippled, suggesting that reflux may work in parallel with ERAD. In summary, chaperone-mediated ER protein reflux may be a conserved protein quality control process that evolved to maintain secretory pathway homeostasis during ER protein-folding stress. 10.1073/pnas.1904516116
Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Liao Zhiwei,Luo Rongjin,Li Gaocai,Song Yu,Zhan Shengfeng,Zhao Kangcheng,Hua Wenbin,Zhang Yukun,Wu Xinghuo,Yang Cao Theranostics : Intervertebral disc degeneration (IDD) is widely accepted as a cause of low back pain and related degenerative musculoskeletal disorders. Nucleus pulposus (NP) cell apoptosis which is related to excessive endoplasmic reticulum (ER) stress in the intervertebral disc (IVD) could aggravate IDD progression. Many studies have shown the therapeutic potential of exosomes derived from bone marrow mesenchymal stem cells (MSC-exos) in degenerative diseases. We hypothesized that the delivery of MSC-exos could modulate ER stress and inhibit excessive NP cell apoptosis during IDD. : The ER stress levels were measured in normal or degenerative NP tissues for contrast. The effects of MSC-exos were testified in advanced glycation end products (AGEs) -induced ER stress in human NP cells. The mechanism involving AKT and ERK signaling pathways was investigated using RNA interference or signaling inhibitors. Histological or immunohistochemical analysis and TUNEL staining were used for evaluating MSC-exos therapeutic effects . : The ER stress level and apoptotic rate was elevated in degenerative IVD tissues. MSC-exos could attenuate ER stress-induced apoptosis by activating AKT and ERK signaling. Moreover, delivery of MSC-exos modulated ER stress-related apoptosis and retarded IDD progression in a rat tail model. : These results highlight the therapeutic effects of exosomes in preventing IDD progression. Our work is the first to demonstrate that MSC-exos could modulate ER stress-induced apoptosis during AGEs-associated IVD degeneration. 10.7150/thno.33638
Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: a protective role. Cheng Yu-Chi,Chang Jer-Ming,Chen Chien-An,Chen Hung-Chun Experimental biology and medicine (Maywood, N.J.) Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage. 10.1177/1535370214553772
Cell death induced by endoplasmic reticulum stress. Iurlaro Raffaella,Muñoz-Pinedo Cristina The FEBS journal The endoplasmic reticulum is an organelle with multiple functions. The synthesis of transmembrane proteins and proteins that are to be secreted occurs in this organelle. Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress. The cellular response involves the activation of sensors that transduce signaling cascades with the aim of restoring homeostasis. This is known as the unfolded protein response, which also intersects with the integrated stress response that reduces protein synthesis through inactivation of the initiation factor eIF2α. Central to the unfolded protein response are the sensors PERK, IRE1 and ATF6, as well as other signaling nodes such as c-Jun N-terminal kinase 1 (JNK) and the downstream transcription factors XBP1, ATF4 and CHOP. These proteins aim to restore homeostasis, but they can also induce cell death, which has been shown to occur by necroptosis and, more commonly, through the regulation of Bcl-2 family proteins (Bim, Noxa and Puma) that leads to mitochondrial apoptosis. In addition, endoplasmic reticulum stress and proteotoxic stress have been shown to induce TRAIL receptors and activation of caspase-8. Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation. Understanding how cells react to endoplasmic reticulum stress can accelerate discovery of drugs against these diseases. 10.1111/febs.13598
Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Yang Xiaochen,Srivastava Renu,Howell Stephen H,Bassham Diane C The Plant journal : for cell and molecular biology Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol-requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4-phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin- or dithiothreitol-induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over-expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4-phenylbutyrate, suggesting that heat-induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b-dependent manner. Moreover, zeolin and CPY* partially co-localized with the autophagic body marker GFP-ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress. 10.1111/tpj.13091
Endoplasmic Reticulum Stress and Autophagy. Qi Zhihao,Chen Linxi Advances in experimental medicine and biology In 1945, K. R. Porter et al. observed mouse embryonic fibroblasts (MEFs) and found that the cytoplasmic part of the cell had an unreported reticular structure, so it was named endoplasmic reticulum (ER). The major functions of the endoplasmic reticulum are: synthesis of intracellular proteins and the modification and processing of proteins. It is an important organelle in eukaryotic cells. It is a three-dimensional network structure in which complex and closed intracellular tubular intimal systems are intertwined. When cells are subjected to various strong stimulating factors such as nutrient deficiencies, Ca metabolic imbalance, toxin stimulation, and sustained oxidative stress stimulation, the cell homeostasis will be broken. In order to survive, a series of cell self-protection event will be initiated including the endoplasmic reticulum stress (ERS). The UPR can further promote the expression of the proteins which can help the misfolded and unfolded proteins restore to its normal structure through the activation of PERK, IRE1, and ATF6. However, the co-working of UPR and the ubiquitin-proteasome system still cannot make the endoplasmic reticulum restoring to its normal state, when the stimuli persist or are too strong. The damaged endoplasmic reticulum can be partially engulfed by the autophagic vesicles for degradation when the ERS persists. The degraded endoplasmic reticulum fragments can be reassembled into a new endoplasmic reticulum to restore the normal state of it. Hence, it seems that the autophagy has become the last mean to restore the homeostasis of endoplasmic reticulum. 10.1007/978-981-15-0602-4_8
Tacrolimus regulates endoplasmic reticulum stress-mediated osteoclastogenesis and inflammation: In vitro and collagen-induced arthritis mouse model. Lee Won-Seok,Jeong Ji-Hyeon,Lee Eun-Gyeong,Choi Yunjung,Kim Jin-Hee,Kim Hang-Rae,Yoo Wan-Hee Cell biology international Tacrolimus is an immunosuppressive drug that inhibits the release of inflammatory cytokines involved in rheumatoid arthritis development by blocking T cell activation. "Endoplasmic reticulum stress," an imbalance between protein folding load and capacity leading to the accumulation of unfolded proteins in the endoplasmic reticulum lumen, has been implicated in rheumatoid arthritis and other inflammatory and metabolic diseases. We aimed to investigate the effect of tacrolimus on endoplasmic reticulum stress-mediated osteoclastogenesis and inflammation and elucidate the underlying mechanisms. In vitro studies were performed using mouse bone marrow cells that were cultured with or without interleukin-1β, thapsigargin, or tacrolimus to induce osteoclast differentiation. A mouse model of arthritis was established by immunizing mice with bovine type II collagen. Tacrolimus was orally administered to mice from day 20 to 45 following the initial immunization, and histopathological changes and expression of specific biomarkers of endoplasmic reticulum stress-mediated inflammatory signaling pathways were examined. In vitro, tacrolimus inhibited receptor activator of nuclear factor-κB ligand-mediated osteoclast formation augmented by interleukin-1β, thapsigargin, or both. Furthermore, tacrolimus inhibited glucose-regulated protein (GRP78), protein kinase R-like endoplasmic reticulum kinase, inositol-requiring enzyme 1 (IRE 1), and activating transcription factor 6 (ATF6) augmented by interleukin-1β, thapsigargin, or both. Tacrolimus significantly ameliorated osteolysis and endoplasmic reticulum stress intensity in mice. Simultaneously, it reduced inflammatory cell infiltration, osteoclastogenesis, and inflammatory responses by inhibiting GRP78, IRE 1, and ATF6. These findings suggest that tacrolimus exhibits an anti-inflammation effect in rheumatoid arthritis and might inhibit joint damage progression by inhibiting endoplasmic reticulum stress. 10.1002/cbin.10861
Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway. Fu Zurong,Li Fei,Jia Liangliang,Su Shengan,Wang Yaping,Cai Zhejun,Xiang Meixiang The Journal of thoracic and cardiovascular surgery OBJECTIVE:Aortic valve (AoV) calcification occurs via a pathophysiologic process that includes osteoblastic differentiation of valvular interstitial cells (VICs). Histone deacetylases (HDACs) have been shown to be involved in the pathogenesis of vascular diseases. Here, we investigated the role of HDAC6 in AoV calcification. METHODS:AoV cusps from patients with aortic stenosis (n = 7) and normal controls (n = 7) were subjected to determination of calcified nodules and HDAC6 expression. Human VICs were cultured in osteogenic media and treated with 10 uM tubacin or HDAC6 small interfering RNA silencing to inhibit HDAC6. Treatment with 100 uM tauroursodeoxycholic acid was used to suppress endoplasmic reticulum stress. Activating transcription factor 4 (ATF4) small interfering RNA was used to knock down ATF4. Alizarin red staining was used to evaluate calcified nodules formation of VICs cultured with osteogenic media for 14 days. RESULTS:HDAC6 expression was significantly reduced in AoV tissue of patients with aortic stenosis compared with controls. Tubacin treatment or HDAC6 silencing markedly promoted osteoblastic differentiation accompanied by endoplasmic reticulum stress activation in VICs. The HDAC6 inhibition-induced osteogenic pathway was mediated by endoplasmic reticulum stress/ATF4 pathway as indicated by tauroursodeoxycholic acid pretreatment or ATF4 silencing. Finally, alizarin red staining showed that HDAC6 inhibition promoted osteoblastic differentiation of VICs, which could be suppressed by tauroursodeoxycholic acid. CONCLUSIONS:HDAC6 inhibition promotes AoV calcification via an endoplasmic reticulum stress/ATF4-mediated osteogenic pathway. HDAC6 may be a novel target for AoV calcification prevention and treatment. 10.1016/j.jtcvs.2018.10.136
Biomechanically reduced expression of Derlin-3 is linked to the apoptosis of chondrocytes in the mandibular condylar cartilage via the endoplasmic reticulum stress pathway. Liu Jinqiang,Yang Hongxu,Zhang Hongyun,Liu Qian,Zhou Ping,He Feng,Zhang Mian,Yu Shibin,Liu Jiguang,Wang Meiqing Archives of oral biology OBJECTIVE:The present purpose was to investigate the involvement of Derlin-3 in the endoplasmic reticulum stress pathway-mediated apoptosis of chondrocytes in biomechanically stimulated mandibular condylar cartilage. DESIGN:First, fluid flow shear stress (FFSS) was applied to ATDC5 cells with or without overexpression of Derlin-3 by lentiviral transduction or silencing of Derlin-3 by siRNA transfection. Apoptosis was evaluated by TUNEL assay. Molecular markers related to the endoplasmic reticulum stress-apoptosis pathway, including GRP78, CHOP, ATF6, Caspase-12, and cleaved Caspase-3, were detected by real-time polymerase chain reaction and Western blotting. Second, the expression of proteins related to the endoplasmic reticulum stress-apoptosis pathway of the chondrocytes in mandibular condylar cartilage of mice treated with unilateral anterior crossbite (UAC) prostheses was evaluated by immunohistochemical staining and TUNEL assay. RESULTS:FFSS induced the endoplasmic reticulum stress-apoptosis pathway in ATDC5 cells. This apoptosis was suppressed by overexpressing Derlin-3 but was enhanced by silencing Derlin-3. UAC increased Derlin-3 expression in mandibular condylar cartilage at 1 and 3 weeks but decreased Derlin-3 expression at 7 and 11 weeks. The reduction of Derlin-3 expression by UAC was associated with the increase in the endoplasmic reticulum stress pathway-mediated apoptosis in degenerative mandibular condylar cartilage. UAC elicited changes in Derlin-3 expression and the endoplasmic reticulum stress pathway-mediated apoptosis was reversed after the removal of the prosthesis. CONCLUSION:Reduced Derlin-3 expression is associated with the biomechanically induced endoplasmic reticulum stress pathway-mediated apoptosis of chondrocytes in the mandibular condylar cartilage and could be a therapeutic target for the treatment of biomechanically stimulated cartilage degradation. 10.1016/j.archoralbio.2020.104843