logo logo
Nanoparticle Assembly at Liquid-Liquid Interfaces: From the Nanoscale to Mesoscale. Shi Shaowei,Russell Thomas P Advanced materials (Deerfield Beach, Fla.) In the past few decades, novel syntheses of a wide range of nanoparticles (NPs) with well-defined chemical composition and structure have opened tremendous opportunities in areas ranging from optical and electronic devices to biomedical markers. Controlling the assembly of such well-defined NPs is important to effectively harness their unique properties. The assembly of NPs at liquid-liquid interfaces is becoming a central topic both in surface and colloid science. Hierarchical structures, including 2D films, 3D capsules, and structured liquids, have been generating significant interest and are showing promise for physical, chemical, and biological applications. Here, a brief overview of the development of the self-assembly of NPs at liquid-liquid interfaces is provided, from theory to experiment, from synthetic NPs to bio-nanoparticles, from water-oil to water-water, and from "liquid-like" to "solid-like" assemblies. 10.1002/adma.201800714
Engineering Polymerases for New Functions. Coulther Timothy A,Stern Hannah R,Beuning Penny J Trends in biotechnology DNA polymerases are critical tools in biotechnology, enabling efficient and accurate amplification of DNA templates, yet many desired functions are not readily available in natural DNA polymerases. New or improved functions can be engineered in DNA polymerases by mutagenesis or through the creation of protein chimeras. Engineering often necessitates the development of new techniques, such as selections in water-in-oil emulsions that connect genotype to phenotype and allow more flexibility in engineering than phage display. Engineering efforts have led to DNA polymerases that can withstand extreme conditions or the presence of inhibitors, as well as polymerases with the ability to copy modified DNA templates. In this review we discuss polymerases for biotechnology that have been reported along with tools to enable further development. 10.1016/j.tibtech.2019.03.011
Superoleophobic surfaces. Yong Jiale,Chen Feng,Yang Qing,Huo Jinglan,Hou Xun Chemical Society reviews Superoleophobicity is a phenomenon where the contact angles of various oil droplets with low surface tension on a solid surface are larger than 150°. In the past few years, there has been much growing interest in the design and application of superoleophobic surfaces. Such surfaces have great significance for both fundamental research and a variety of practical applications, including oil-repellent coatings, self-cleaning, oil/water separation, oil droplet manipulation, chemical shielding, anti-blocking, designing liquid microlens, oil capture, bioadhesion, guiding oil movement and floating on oil. Herein, we systematically summarize the recent developments of superoleophobic surfaces. This review focuses on the design, fabrication, characteristics, functions, and important applications of various superoleophobic surfaces. Although many significant advances have been achieved, superoleophobic surfaces are still in their "toddler stage" of development. The current challenges and future prospects of this fast-growing field of superoleophobicity are discussed. 10.1039/c6cs00751a
Preparation and evaluation of w/o/w type emulsions containing vancomycin. Okochi H,Nakano M Advanced drug delivery reviews The objective of this contribution is to summarize the preparation and application of water-in-oil-in-water type multiple emulsions (w/o/w emulsions) entrapping vancomycin (VCM). Formulations of the emulsions (the composition of an oily phase or the type and concentrations of surfactants) and emulsification methods (a stirring method and a membrane method) or conditions (rotation rates, pore sizes of membrane or operation pressures) were evaluated in order to prepare stable w/o/w emulsions. The pharmaceutical properties of the w/o/w emulsions - particle sizes, viscosity, phase separation and drug entrapment efficiency were measured and evaluated. We prepared stable w/o/w emulsions with a particle size of about 3 micrometer and an entrapment efficiency of VCM of about 70%. When this emulsion was administered intravenously to rats, plasma concentrations of VCM were prolonged compared to the VCM solution alone. The results of this study show the potential of the w/o/w emulsions for several clinical applications as one of the drug delivery systems. 10.1016/s0169-409x(00)00097-1
Novel proteins in emulsions using in vitro compartmentalization. Rothe Achim,Surjadi Regina N,Power Barbara E Trends in biotechnology IVC (in vitro compartmentalization) provides a complete cell-free approach for the production of novel targeted proteins. IVC uses aqueous droplets, which contain DNA and components for protein production, within water-in-oil emulsions. Recent advances in the composition and formation, as well as the detection, sorting and recovery, of the droplets enable the evolution of the encoded protein. Furthermore, IVC technology permits the step-wise addition of reagents into the droplets, making them suitable for high-throughput applications - where synthetic enzymes with substrate specificity are selected for catalytic activity, binding and regulation. In the broad field of in vitro display, developments such as the incorporation of unnatural amino acids and the production of cell toxic proteins expand the diverse spectrum of future applications for IVC. 10.1016/j.tibtech.2006.10.007
Miniaturising the laboratory in emulsion droplets. Griffiths Andrew D,Tawfik Dan S Trends in biotechnology Biochemical and genetic assays can be both miniaturized and parallelized by compartmentalization in living cells. In vitro compartmentalization (IVC) offers an alternative strategy based on partitioning reactions in water droplets dispersed to form microscopic compartments in water-in-oil emulsions. The cell-like volumes of these compartments (as low as one femtolitre), the ability to freely determine and regulate their content and the large number of compartments (>10(10) per millilitre emulsion) have provided the basis for a range of new, ultra-high-throughput, cell-free technologies. This review describes the scope and potential of IVC in areas such as in vitro evolution of proteins and RNAs, cell-free cloning and sequencing, genetics, genomics, and proteomics. 10.1016/j.tibtech.2006.06.009
Microsphere-Based Scaffolds in Regenerative Engineering. Gupta Vineet,Khan Yusuf,Berkland Cory J,Laurencin Cato T,Detamore Michael S Annual review of biomedical engineering Microspheres have long been used in drug delivery applications because of their controlled release capabilities. They have increasingly served as the fundamental building block for fabricating scaffolds for regenerative engineering because of their ability to provide a porous network, offer high-resolution control over spatial organization, and deliver growth factors/drugs and/or nanophase materials. Because they provide physicochemical gradients via spatiotemporal release of bioactive factors and nanophase ceramics, microspheres are a desirable tool for engineering complex tissues and biological interfaces. In this review we describe various methods for microsphere fabrication and sintering, and elucidate how these methods influence both micro- and macroscopic scaffold properties, with a special focus on the nature of sintering. Furthermore, we review key applications of microsphere-based scaffolds in regenerating various tissues. We hope to inspire researchers to join a growing community of investigators using microspheres as tissue engineering scaffolds so that their full potential in regenerative engineering may be realized. 10.1146/annurev-bioeng-071516-044712
Cell-laden Polymeric Microspheres for Biomedical Applications. Leong Wenyan,Wang Dong-An Trends in biotechnology Microsphere technology serves as an efficient and effective platform for cell applications (in vitro cell culture and in vivo cell delivery) due to its mimicry of the 3D native environment, high surface area:volume ratio, and ability to isolate the entrapped cells from the environment. Properties of cell-laden microspheres are determined by the type of application and the cell. While high cell densities are preferable for large-scale therapeutic biomolecule production in vitro, an immunoprotective barrier is most important for allogeneic pancreatic islet transplantation into patients. Furthermore, the biological cells require a suitable microenvironment in terms of its physical and biochemical properties. Here, we discuss applications of cell-laden microspheres and their corresponding design parameters. 10.1016/j.tibtech.2015.09.003