logo logo
Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiology and molecular biology reviews : MMBR Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established. 10.1128/MMBR.00068-17
Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A. Cai Menghao,Zhang Ying,Hu Wei,Shen Wei,Yu Zhenzhong,Zhou Weiqiang,Jiang Tao,Zhou Xiangshan,Zhang Yuanxing Microbial cell factories BACKGROUND:For filamentous fungi, the basic growth unit of hyphae usually makes it sensitive to shear stress which is generated from mechanical force and dynamic fluid in bioreactor, and it severely decreases microbial productions. The conventional strategies against shear-sensitive conundrum in fungal fermentation usually focus on adapting agitation, impeller type and bioreactor configuration, which brings high cost and tough work in industry. This study aims to genetically shape shear resistant morphology of shear-sensitive filamentous fungus Aspergillus glaucus to make it adapt to bioreactor so as to establish an efficient fermentation process. RESULTS:Hyphal morphology shaping by modifying polarized growth genes of A. glaucus was applied to reduce its shear-sensitivity and enhance aspergiolide A production. Degenerate PCR and genome walking were used to obtain polarized growth genes AgkipA and AgteaR, followed by construction of gene-deficient mutants by homologous integration of double crossover. Deletion of both genes caused meandering hyphae, for which, ΔAgkipA led to small but intense curves comparing with ΔAgteaR by morphology analysis. The germination of a second germ tube from conidiospore of the mutants became random while colony growth and development almost maintained the same. Morphology of ΔAgkipA and ΔAgteaR mutants turned to be compact pellet and loose clump in liquid culture, respectively. The curved hyphae of both mutants showed no remarkably resistant to glass bead grinding comparing with the wild type strain. However, they generated greatly different broth rheology which further caused growth and metabolism variations in bioreactor fermentations. By forming pellets, the ΔAgkipA mutant created a tank environment with low-viscosity, low shear stress and high dissolved oxygen tension, leading to high production of aspergiolide A (121.7 ± 2.3 mg/L), which was 82.2% higher than the wild type. CONCLUSIONS:A new strategy for shaping fungal morphology by modifying polarized growth genes was applied in submerged fermentation in bioreactor. This work provides useful information of shaping fungal morphology for submerged fermentation by genetically modification, which could be valuable for morphology improvement of industrial filamentous fungi. 10.1186/1475-2859-13-73
The Aspergillus niger RmsA protein: A node in a genetic network? Meyer Vera,Minkwitz Susann,Schütze Tabea,van den Hondel Cees A M J J,Ram Arthur F J Communicative & integrative biology Many cells and organisms go through polarized growth phases during their life. Cell polarization is achieved by local accumulation of signaling molecules which guide the cytoskeleton and vesicular trafficking to specific parts of the cell and thus ensure polarity establishment and maintenance. Polarization of signaling molecules is also fundamental for the lifestyle of filamentous fungi such as Aspergillus niger and essential for their morphogenesis, development and survival under environmental stress conditions. Considerable advances in our understanding on the protagonists and processes mediating polarized growth in filamentous fungi have been made over the past years. However, how the interplay of different signaling pathways is coordinated has yet to be determined. We found that the A. niger RmsA protein is central for the polarization of actin at the hyphal tip but also of vital importance for the metabolism, viability and stress resistance of A. niger. This suggests that RmsA could occupy an important position in the global network of pathways that balance growth, morphogenesis and survival of A. niger. 10.4161/cib.3.2.10983
Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks. Fortwendel Jarrod R Fungal biology reviews Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi. 10.1016/j.fbr.2015.04.003
Coordinated process of polarized growth in filamentous fungi. Takeshita Norio Bioscience, biotechnology, and biochemistry Filamentous fungi are extremely polarized organisms, exhibiting continuous growth at their hyphal tips. The hyphal form is related to their pathogenicity in animals and plants, and their high secretion ability for biotechnology. Polarized growth requires a sequential supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeleton. Therefore, the arrangement of the cytoskeleton is a crucial step to establish and maintain the cell polarity. This review summarizes recent findings unraveling the mechanism of polarized growth with special emphasis on the role of actin and microtubule cytoskeleton and polarity marker proteins. Rapid insertions of membranes via highly active exocytosis at hyphal tips could quickly dilute the accumulated polarity marker proteins. Recent findings by a super-resolution microscopy indicate that filamentous fungal cells maintain their polarity at the tips by repeating transient assembly and disassembly of polarity sites. 10.1080/09168451.2016.1179092
How does a hypha grow? The biophysics of pressurized growth in fungi. Lew Roger R Nature reviews. Microbiology The mechanisms underlying the growth of fungal hyphae are rooted in the physical property of cell pressure. Internal hydrostatic pressure (turgor) is one of the major forces driving the localized expansion at the hyphal tip which causes the characteristic filamentous shape of the hypha. Calcium gradients regulate tip growth, and secretory vesicles that contribute to this process are actively transported to the growing tip by molecular motors that move along cytoskeletal structures. Turgor is controlled by an osmotic mitogen-activated protein kinase cascade that causes de novo synthesis of osmolytes and uptake of ions from the external medium. However, as discussed in this Review, turgor and pressure have additional roles in hyphal growth, such as causing the mass flow of cytoplasm from the basal mycelial network towards the expanding hyphal tips at the colony edge. 10.1038/nrmicro2591