logo logo
Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration. Lu Jiayu,Cheng Chi,He Yu-Shi,Lyu Chengqi,Wang Yufei,Yu Jia,Qiu Ling,Zou Derong,Li Dan Advanced materials (Deerfield Beach, Fla.) A multilayered graphene hydrogel (MGH) membrane is used as an excellent barrier membrane for guided bone regeneration. The unique multilayered nanostructure of the MGH membrane results in improved material properties, which benefits protein adsorption, cell adhesion, and apatite deposition, and allows higher quality and fast bone regeneration. 10.1002/adma.201505375
A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Liao Susan,Wang Wei,Uo Motohiro,Ohkawa Shoji,Akasaka Tsukasa,Tamura Kazuchika,Cui Fuzhai,Watari Fumio Biomaterials Functional graded materials (FGM) provided us one new concept for guided tissue regeneration (GTR) membrane design with graded component and graded structure where one face of the membrane is porous thereby allowing cell growth thereon and the opposite face of the membrane is smooth, thereby inhibiting cell adhesion in periodontal therapy. The goal of the present study was to develop a three-layered graded membrane, with one face of 8% nano-carbonated hydroxyapatite/collagen/poly(lactic-co-glycolic acid) (nCHAC/PLGA) porous membrane, the opposite face of pure PLGA non-porous membrane, the middle layer of 4% nCHAC/PLGA as the transition through layer-by-layer casting method. Then the three layers were combined well with each other with flexibility and enough high mechanical strength as membrane because the three layers all contained PLGA polymer that can be easily used for practical medical application. This high biocompatibility and osteoconductivity of this biodegraded composite membrane was enhanced by the nCHAC addition, for the same component and nano-level crystal size with natural bone tissue. The osteoblastic MC3T3-E1 cells were cultured on the three-layered composite membrane, the primary result shows the positive response compared with pure PLGA membrane. 10.1016/j.biomaterials.2005.05.050
Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Fujihara K,Kotaki M,Ramakrishna S Biomaterials In this study, new type of guided bone regeneration (GBR) membranes were fabricated by polycaprolactone (PCL)/CaCO3 composite nano-fibers with two different PCL to calcium carbonate (CaCO3) ratios (PCL:CaCO3=75:25 wt% and 25:75 wt%). The composite nano-fibers were successfully fabricated by electrospinning method and CaCO3 nano-particles on the surface of nano-fibers were confirmed by energy disperse X-ray (EDX) analysis. In order to achieve mechanical stability of GBR membranes, composite nano-fibers were spun on PCL nano-fibrous membranes which has high tensile strength, i.e., the membranes consist of two layers of functional layer (PCL/CaCO3) and mechanical support layer (PCL). Two different GBR membranes were prepared, i.e., GBR membrane (A)=PCL:CaCO3=75:25 wt%+PCL, GBR membrane (B)=PCL:CaCO3=25:75 wt%+PCL. Osteoblast attachment and proliferation of GBR membrane (A) and (B) were discussed by MTS assay and scanning electron microscope (SEM) observation. As a result, absorbance intensity of GBR membrane (A) and tissue culture polystyrene (TCPS) increased during 5 days seeding time. In contrast, although absorbance intensity of GBR membrane (B) also increased, its value was lower than membrane (A). SEM observation showed that no significant difference in osteoblast attachment manner was seen on GBR membrane (A) and (B). Because of good cell attachment manner, there is a potential to utilize PCL/CaCO3 composite nano-fibers to GBR membranes. 10.1016/j.biomaterials.2004.09.014
A histological evaluation for guided bone regeneration induced by a collagenous membrane. Taguchi Yuya,Amizuka Norio,Nakadate Masayoshi,Ohnishi Hideo,Fujii Noritaka,Oda Kimimitsu,Nomura Shuichi,Maeda Takeyasu Biomaterials This study was designed to evaluate the histological changes during ossification and cellular events including osteogenic differentiation responding to collagenous bioresorbable membranes utilized for GBR. Standardized artificial bony defects were prepared at rat maxillae, and covered with a collagenous bioresorbable membrane. These animals were sacrificed at 1, 2, 3 and 4 weeks after the GBR-operation. The paraffin sections were subject to tartrate resistant acid phosphatase (TRAP) enzyme histochemistry and immunohistochemistry for alkaline phosphatase (ALP), osteopontin (OP) and osteocalcin (OC). In the first week of the experimental group, woven bone with ALP-positive osteoblasts occupied the lower half of the cavity. The collagenous membrane included numerous ALP-negative cells and OP-immunoreactive extracellular matrices. At 2 weeks, the ALP-, OP- and OC-immunoreactivity came to be recognizable in the region of collagenous membrane. Since ALP-negative soft tissue separated the collagenous membrane and the new bone originating from the cavity bottom, the collagenous membrane appeared to induce osteogenesis in situ. At 3 weeks, numerous collagen fibers of the membrane were embedded in the adjacent bone matrix. At 4 weeks, the membrane-associated and the cavity-derived bones had completely integrated, showing the same height of the periosteal ridge as the surrounding alveolar bones. The collagen fibers of a GBR-membrane appear to participate in osteogenic differentiation. 10.1016/j.biomaterials.2005.03.023
Antibacterial Electrospun Polycaprolactone Membranes Coated with Polysaccharides and Silver Nanoparticles for Guided Bone and Tissue Regeneration. Porrelli Davide,Mardirossian Mario,Musciacchio Luigi,Pacor Micol,Berton Federico,Crosera Matteo,Turco Gianluca ACS applied materials & interfaces Electrospun polycaprolactone (PCL) membranes have been widely explored in the literature as a solution for several applications in tissue engineering and regenerative medicine. PCL hydrophobicity and its lack of bioactivity drastically limit its use in the medical field. To overcome these drawbacks, many promising strategies have been developed and proposed in the literature. In order to increase the bioactivity of electrospun PCL membranes designed for guided bone and tissue regeneration purposes, in the present work, the membranes were functionalized with a coating of bioactive lactose-modified chitosan (CTL). Since CTL can be used for the synthesis and stabilization of silver nanoparticles, a coating of this compound was employed here to provide antibacterial properties to the membranes. Scanning electron microscopy imaging revealed that the electrospinning process adopted here allowed us to obtain membranes with homogeneous fibers and without defects. Also, PCL membranes retained their mechanical properties after several weeks of aging in simulated body fluid, representing a valid support for cell growth and tissue development. CTL adsorption on membranes was investigated by fluorescence microscopy using fluorescein-labeled CTL, resulting in a homogeneous and slow release over time. Inductively coupled plasma-mass spectrometry was used to analyze the release of silver, which was shown to be stably bonded to the CTL coating and to be slowly released over time. The CTL coating improved MG63 osteoblast adhesion and proliferation on membranes. On the other hand, the presence of silver nanoparticles discouraged biofilm formation by and without being cytotoxic. Overall, the stability and the biological and antibacterial properties make these membranes a valid and versatile material for applications in guided tissue regeneration and in other biomedical fields like wound healing. 10.1021/acsami.1c01016
Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Xue Jiajia,He Min,Liu Hao,Niu Yuzhao,Crawford Aileen,Coates Phil D,Chen Dafu,Shi Rui,Zhang Liqun Biomaterials Infection is the major reason for guided tissue regeneration/guided bone regeneration (GTR/GBR) membrane failure in clinical application. In this work, we developed GTR/GBR membranes with localized drug delivery function to prevent infection by electrospinning of poly(ε-caprolactone) (PCL) and gelatin blended with metronidazole (MNA). Acetic acid (HAc) was introduced to improve the miscibility of PCL and gelatin to fabricate homogeneous hybrid nanofiber membranes. The effects of the addition of HAc and the MNA content (0, 1, 5, 10, 20, 30, and 40 wt.% of polymer) on the properties of the membranes were investigated. The membranes showed good mechanical properties, appropriate biodegradation rate and barrier function. The controlled and sustained release of MNA from the membranes significantly prevented the colonization of anaerobic bacteria. Cells could adhere to and proliferate on the membranes without cytotoxicity until the MNA content reached 30%. Subcutaneous implantation in rabbits for 8 months demonstrated that MNA-loaded membranes evoked a less severe inflammatory response depending on the dose of MNA than bare membranes. The biodegradation time of the membranes was appropriate for tissue regeneration. These results indicated the potential for using MNA-loaded PCL/gelatin electrospun membranes as anti-infective GTR/GBR membranes to optimize clinical application of GTR/GBR strategies. 10.1016/j.biomaterials.2014.07.060
Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Lee Young Jun,Lee Ji-Hye,Cho Hyeong-Jin,Kim Hyung Keun,Yoon Taek Rim,Shin Heungsoo Biomaterials The development of ideal barrier membranes with appropriate porosity and bioactivity is essential for the guidance of new bone formation in orthopedic and craniomaxillofacial surgery. In this study, we developed bioactive electrospun fibers based on poly (lactide-co-glycolic acid) (PLGA) by immobilizing bone-forming peptide 1 (BFP1) derived from the immature region of bone morphogenetic protein 7 (BMP7). We exploited polydopamine chemistry for the immobilization of BFP1; polydopamine (PD) was coated on the electrospun PLGA fibers, on which BFP1 was subsequently immobilized under weakly basic conditions. The immobilization of BFP1 was verified by characterizing the surface chemical composition and quantitatively measured by fluorescamine assay. The immobilization of BPF1 on the electrospun fibers supported the compact distribution of collagen I and the spreading of human mesenchymal stem cells (hMSCs). SEM micrographs demonstrated the aggregation of globular mineral accretions, with significant increases in ALP activity and calcium deposition when hMSCs were cultured on fibers immobilized with BFP1 for 14 days. We then implanted the prepared fibers onto mouse calvarial defects and analyzed bone formation after 2 months. Semi-quantification of bone growth from representative X-ray images showed that the bone area was approximately 20% in the defect-only group, while the group implanted with PLGA fibers showed significant improvements of 44.27 ± 7.37% and 57.59 ± 15.24% in the groups implanted with PD-coated PLGA and with BFP1-coated PLGA, respectively. Based on these results, our approach may be a promising tool to develop clinically-applicable bioactive membranes for guided bone regeneration." 10.1016/j.biomaterials.2013.03.051